100 великих научных достижений России - страница 10
Что же касается главного труда Ковалевской о волчке, этой проблемой занимались до нее знаменитые математики – Л. Эйлер, Ж.Л. Лагранж и др. Предшественники решили две из трех задач уравнений движения твердого тела около неподвижной точки. Ну а Ковалевской пришлось решить самую сложную и одновременно доказать, что тем самым «исчерпываются средства современного анализа».
Ковалевская подошла к этой задаче с позиций теории аналитических функций, которою она хорошо владела, и ей удалось разобрать до конца новый, открытый ею случай вращения твердого тела. Чтобы не усложнять рассказ, скажем лишь: помогла математику найти красивое решение (хотя и очень сложное по форме) теория гиперэллиптических функций. Ковалевская указала верное направление в решении этой задачи, после чего другие математики и механики (С.А. Чаплыгин, Н.Е. Жуковский, Т. Леви-Чивита) начали заниматься ею с различных точек зрения, а А.М. Ляпунов в 1894 г. придал ее результатам весьма общую форму. Н.Б. Делоне для пущей наглядности даже сконструировал прибор, воспроизводящий волчок (гироскоп) Ковалевской «^». Отец русской авиации Н.Е. Жуковский восхищался легкостью и простотой ее анализа. Он дал геометрическое истолкование решения этой задачи.
Ковалевская продолжила заниматься этой темой, и в 1889 г. за два сочинения, состоящие в связи с той же работой, получила премию короля Оскара II от Стокгольмской АН.
Российская АН, не пожелав отставать от Парижской, избрала Ковалевскую в 1889 г. своим членом-корреспондентом на физико-математическом отделении, хотя до этого всячески тормозила ее принятие, ссылаясь на отсутствие прецедента. Не иначе господа академики женщину в академии путали с женщиной на корабле.
Однако когда Софья Васильевна пожелала как член-корреспондент присутствовать на заседании академии, ей ответили, что пребывание женщин на таких заседаниях «не в обычаях академии». Более того, даже работы для нее в Петербурге не нашлось. Максимум, на что она могла рассчитывать, – стать учительницей арифметики. Стоит ли удивляться после этого, что Ковалевская отдала много сил борьбе за женскую эмансипацию!
Последними словами этой прекрасной женщины были: «Слишком много счастья».
Теория устойчивости Ляпунова
Математик, механик; профессор Харьковского, Казанского, Петербургского, Новороссийского университетов; академик Петербургской АН; иностранный член Академии dei Lincei в Риме, член-корреспондент Парижской АН, иностранный член математического кружка в Палермо, почетный член Харьковского математического общества, непременный член Общества любителей естествознания в Москве и других научных обществ, Александр Михайлович Ляпунов (1857–1918) знаменит своими классическими трудами в математической физике (теория потенциала, задача Дирихле), теории вероятностей (метод характеристических функций, доказательство центральной предельной теоремы), гидродинамике. Классикой механики стала монография ученого «О фигурах равновесия однородной вращающейся жидкости, мало отличающихся от эллипсоидальных», изданная в 1906–1914 гг. на французском языке. Ляпунов создал современную науку об устойчивости и равновесии движущихся механических систем, определяемых конечным числом параметров.
Говоря о трудах гениальных математиков, надо всегда иметь в виду, что их научные достижения проявляются в двух сферах: математической и практической. Так и хочется сказать: в двух небесных сферах. Впрочем, эта мысль не просто цветистость речи. Что касается главного научного достижения Ляпунова – теории устойчивости, одной из важнейших проблем математической физики и механики, – без нее и впрямь в небесной механике и космологии не решить проблемы устойчивости движения. Так, в середине XX в. именно методы Ляпунова позволили полностью разрешить проблему устойчивости движения искусственных спутников Земли, в частности устойчивости движения в центральном поле тяготения и устойчивости вращательных движений спутника вокруг его центра инерции.