101 факт об искусственном интеллекте. Как подготовиться к жизни в новой реальности - страница 8



Анализ данных обычно опирается на два вида информации: структурированные и неструктурированные данные. Чтобы действительно понять системы ИИ, важно знать ключевые различия между двумя типами данных.

Обычно структурированные данные используются гораздо чаще неструктурированных. Структурированные данные включают в себя простые данные, такие как числовые значения, даты, валюты или адреса. Неструктурированные данные включают в себя более сложные для анализа типы данных: текст, изображения и видео. Однако развитие инструментов искусственного интеллекта сделало возможным анализ более обширного спектра неструктурированных данных, которые затем можно использовать для создания рекомендаций и прогнозов.

Мощная аналитика даст нам возможность в будущем применять инструменты искусственного интеллекта для всего общества в целом.


Рис. 1.6. Структурированные и неструктурированные данные


В «Меррилл Линч» посчитали, что 80–90 % всех бизнес-данных в мире не структурированы, это означает, что анализ именно такого типа данных очень ценен[14]. Результаты анализа неструктурированных данных могут привести к возникновению ряда преимуществ в нашем современном обществе, включая, помимо прочего, лучшие возможности для здравоохранения, более безопасные схемы дорожного движения, а также облегчение доступа к образованию.

Использование данных в бизнесе и общественной деятельности

«Большие данные» также помогают крупным компаниям улучшать свою внешнюю и внутреннюю деятельность. Ли Кайфу, венчурный капиталист и директор компании Sinovation Ventures, описывает причины того, почему данные важны для технологических компаний, в пяти шагах, которые компании используют для улучшения своих решений в области искусственного интеллекта:

Получение большего количества данных: поисковый алгоритм Google содержит в себе огромное количество данных. Кроме того, Facebook не стала бы настолько мощной социальной сетью без доступа к данным о человеческом общении. Основная идея здесь состоит в том, что технологические компании могут создавать услуги, которые были бы настолько мощными и полезными, чтобы люди хотели давать сервису пользоваться своими данными.

Лучший продукт с обученным искусственным интеллектом: в случае Google и Facebook ваш пользовательский опыт учитывает ваши индивидуальные предпочтения, чтобы быть максимально полезным вам. Это становится возможным благодаря наличию инструментов на базе искусственного интеллекта, которые способны персонализировать опыт.

Увеличение числа пользователей: если у пользователей был положительный опыт использования продукта, они, как правило, рекомендуют его своим друзьям.

Повышение прибыли: увеличение числа пользователей всегда означает увеличение прибыли.

Доступ к высококвалифицированным специалистам по теории и методам анализа данных и процессов, а также к экспертам в области машинного обучения: поскольку прибыль компаний растет, они получают возможность привлекать самых лучших в мире экспертов в области искусственного интеллекта[15].

В конце концов, чем больше в компанию приходит специалистов по теории и методам анализа данных и процессов, а также экспертов по машинному обучению, тем значительнее становятся их исследования в области искусственного интеллекта, что, в свою очередь, позволяет компании не только становиться более значимой, но и лучше подготовиться к будущему.