120 практических задач - страница 5
```
– 32 фильтра: Каждый фильтр будет извлекать определенный признак из изображения.
– Размер фильтра 3x3: Это небольшой размер, который хорошо подходит для выделения мелких деталей.
– Функция активации ReLU: Rectified Linear Unit (ReLU) помогает сети обучаться нелинейным отношениям между признаками.
– input_shape=(32, 32, 3): Указываем форму входных данных (32x32 пикселя, 3 цветовых канала).
2. Второй сверточный слой:
```python
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```
–64 фильтра: Увеличиваем количество фильтров, чтобы сеть могла извлекать более сложные признаки.
3. Третий сверточный слой:
```python
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```
– Дополнительный сверточный слой для дальнейшего выделения признаков.
Добавление слоев подвыборки (Pooling)
Слои подвыборки (MaxPooling2D) уменьшают размерность выходных данных от сверточных слоев, что снижает вычислительную сложность и помогает избежать переобучения. Они выбирают максимальное значение из каждого подмассива данных, тем самым сохраняя наиболее значимые признаки.
1. Первый слой подвыборки:
```python
model.add(layers.MaxPooling2D((2, 2)))
```
– Размер пула 2x2: Снижение размерности выходных данных в два раза по каждой оси.
2. Второй слой подвыборки:
```python
model.add(layers.MaxPooling2D((2, 2)))
```
– Дополнительный слой подвыборки для дальнейшего уменьшения размерности данных.
Добавление полносвязных слоев (Fully Connected Layers)
После извлечения признаков из изображений с помощью сверточных и подвыборочных слоев, мы используем полносвязные слои (Dense) для классификации. Эти слои соединяют каждый нейрон предыдущего слоя с каждым нейроном текущего слоя.
1. Приведение данных в одномерный вид:
```python
model.add(layers.Flatten())
```
– Преобразование многомерного выхода сверточных слоев в одномерный вектор.
2. Первый полносвязный слой:
```python
model.add(layers.Dense(64, activation='relu'))
```
– 64 нейрона: Обучение нелинейным комбинациям признаков.
3. Выходной полносвязный слой:
```python
model.add(layers.Dense(10))
```
– 10 нейронов: Каждый нейрон соответствует одному классу из 10 в наборе данных CIFAR-10.
Построенная таким образом сеть состоит из нескольких сверточных слоев для извлечения признаков, слоев подвыборки для уменьшения размерности данных и полносвязных слоев для классификации. Эта архитектура позволяет эффективно решать задачу классификации изображений, выделяя важные признаки и обучаясь на их основе.
5. Построение простой рекуррентной нейронной сети для анализа временных рядов
– Задача: Прогнозирование цен на акции.
Для построения простой рекуррентной нейронной сети (RNN) для анализа временных рядов и прогнозирования цен на акции можно использовать библиотеку TensorFlow и её высокоуровневый интерфейс Keras. В этом примере мы рассмотрим, как использовать LSTM (Long Short-Term Memory) слои, которые являются разновидностью RNN, чтобы построить модель для прогнозирования цен на акции.
Шаги:
1. Импорт библиотек и модулей.
2. Подготовка данных.
3. Построение модели RNN.
4. Компиляция и обучение модели.
5. Оценка и тестирование модели.
Пример кода:
```python
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, models
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Шаг 1: Импорт библиотек