120 практических задач - страница 5



```

– 32 фильтра: Каждый фильтр будет извлекать определенный признак из изображения.

– Размер фильтра 3x3: Это небольшой размер, который хорошо подходит для выделения мелких деталей.

– Функция активации ReLU: Rectified Linear Unit (ReLU) помогает сети обучаться нелинейным отношениям между признаками.

– input_shape=(32, 32, 3): Указываем форму входных данных (32x32 пикселя, 3 цветовых канала).

2. Второй сверточный слой:

```python

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

```

–64 фильтра: Увеличиваем количество фильтров, чтобы сеть могла извлекать более сложные признаки.

3. Третий сверточный слой:

```python

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

```

– Дополнительный сверточный слой для дальнейшего выделения признаков.

Добавление слоев подвыборки (Pooling)

Слои подвыборки (MaxPooling2D) уменьшают размерность выходных данных от сверточных слоев, что снижает вычислительную сложность и помогает избежать переобучения. Они выбирают максимальное значение из каждого подмассива данных, тем самым сохраняя наиболее значимые признаки.

1. Первый слой подвыборки:

```python

model.add(layers.MaxPooling2D((2, 2)))

```

– Размер пула 2x2: Снижение размерности выходных данных в два раза по каждой оси.

2. Второй слой подвыборки:

```python

model.add(layers.MaxPooling2D((2, 2)))

```

– Дополнительный слой подвыборки для дальнейшего уменьшения размерности данных.

Добавление полносвязных слоев (Fully Connected Layers)

После извлечения признаков из изображений с помощью сверточных и подвыборочных слоев, мы используем полносвязные слои (Dense) для классификации. Эти слои соединяют каждый нейрон предыдущего слоя с каждым нейроном текущего слоя.

1. Приведение данных в одномерный вид:

```python

model.add(layers.Flatten())

```

– Преобразование многомерного выхода сверточных слоев в одномерный вектор.

2. Первый полносвязный слой:

```python

model.add(layers.Dense(64, activation='relu'))

```

– 64 нейрона: Обучение нелинейным комбинациям признаков.

3. Выходной полносвязный слой:

```python

model.add(layers.Dense(10))

```

– 10 нейронов: Каждый нейрон соответствует одному классу из 10 в наборе данных CIFAR-10.

Построенная таким образом сеть состоит из нескольких сверточных слоев для извлечения признаков, слоев подвыборки для уменьшения размерности данных и полносвязных слоев для классификации. Эта архитектура позволяет эффективно решать задачу классификации изображений, выделяя важные признаки и обучаясь на их основе.

5. Построение простой рекуррентной нейронной сети для анализа временных рядов

– Задача: Прогнозирование цен на акции.

Для построения простой рекуррентной нейронной сети (RNN) для анализа временных рядов и прогнозирования цен на акции можно использовать библиотеку TensorFlow и её высокоуровневый интерфейс Keras. В этом примере мы рассмотрим, как использовать LSTM (Long Short-Term Memory) слои, которые являются разновидностью RNN, чтобы построить модель для прогнозирования цен на акции.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение модели RNN.

4. Компиляция и обучение модели.

5. Оценка и тестирование модели.

Пример кода:

```python

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow.keras import layers, models

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек