7 секретов нейронных сетей. Или моделирование разума ИИ - страница 4




Пройдёт время и мы будем вместе с вами аналогично этому смеяться над передовой на сегодня моделью Ghat GPT 4, называя её медленной и неадекватной за её иногда выдуманные из пространства ответы, над лучшей на сегодня нейросетью Midjornej которая рисует всё ещё шесть пальцев на руке человека вместо пяти, всё будет происходить один в один с тем, как мы говорим сегодня о первых моделях компьютеров или о интернете 1990 годов и о самом интернете в начале его применения нами.


Таким образом, пусть у нас не будет сомнений в значимости этих данных – они – священное зерно, из которого прорастают чудеса искусственного интеллекта.


Позвольте миру интеллектуального творчества процветать, и пусть искусственный интеллект станет вдохновляющим путеводителем в неизведанных просторах человеческой эволюции.


Если вы посмотрите на этот процесс подробнее, увидите насколько схожи мы, люди, и искусственный интеллект. Оба нам нужны данные для развития, оба мы учимся, обрабатывая эти данные, оба принимаем решения, опираясь на полученные знания. Пришло время ввести новый термин: «Dataset»


Что представляют собой датасеты? Это своего рода «пища» для ума искусственного интеллекта. Слово «dataset», переведенное с английского, означает «набор данных».


Именно эти собрания данных представляют собой неоценимый источник для ИИ. Они фактически выступают в роли учебников, благодаря которым ИИ способен осваивать распознавание образов, делать выбор, а также приспосабливаться к непредвиденным ситуациям.


Возвращаемся к секрету про значимость данных для ИИ. Данные – это действительно сердце Искусственного Интеллекта.


Мастера этого малоизвестного искусства называются специалистами по обработке данных, или дата инженерами. Это они занимаются сбором, формированием и подготовкой датасетов для нейронных сетей. Их работа – первый и, возможно, самый важный шаг в процессе создания искусственного интеллекта. Без этой профессии, прогресс в сфере ИИ был бы невозможен.


И почему это так? Вообразите себе художника, который создает шедевр. Но вместо кисти и красок, он использует алгоритмы и данные.


Алгоритмы – это его кисти, его инструменты, а данные – его краски, его материалы. Без них его полотно останется пустым. Каждый набор данных – это своего рода палитра, с помощью которой ИИ может научиться видеть мир, понимать его и взаимодействовать с ним.


Сегодня мы все более погружаемся в мир данных, и эта профессия становится все более востребованной. Искусство создания датасетов – это искусство формирования взгляда ИИ на мир.


От качества и разнообразия этих «взглядов» зависит не только точность и эффективность работы ИИ, но и его понимание и адаптация к окружающему миру.


Создание датасета – это процесс, похожий на научный эксперимент. Нейронщик формулирует гипотезу, создает техническое задание, проводит эксперимент, анализирует данные, делает правки и комментарии. Затем эти данные преобразуются в учебный материал для ИИ.


Этот процесс напоминает обучение человека. Ведь наша среда обитания, наши учителя, семья, друзья, опыт в детском саду, школе, университете – все это формирует наши знания и восприятие мира.


Нейронщик для ИИ – это нечто вроде родителя или учителя, влияющего на то, как ИИ будет понимать и воспринимать окружающий мир.

Профессия специалиста по нейронным сетям, или «нейронщика», требует уникального набора навыков и знаний, которые позволяют эффективно работать с технологией искусственного интеллекта и машинного обучения. Вот основные аспекты этой профессии: