Актуальные проблемы обучения математике и информатике в школе и педагогическом вузе - страница 3
11) проблемы преемственности, непрерывности образования;
12) предпрофильная подготовка учащихся;
13) профильное обучение;
14) активные методы обучения;
15) методическое обеспечение образовательных программ и др.
2. Тема должна содержать проблему методического исследования, т. е. отражать решение одного из актуальных, современных вопросов обучения, перспективы его развития, специфику авторского подхода.
В связи с этим рассмотрим следующий пример: «Геометрия Лобачевского». Бесспорно, очень эффектное и красивое название, в нём есть своеобразная изюминка. Это хорошее название, но не для научного исследования, скорее для статьи, книги, учебника. Какую актуальную проблему методики предлагается разрешить в этой работе? Есть прекрасные книги, в частности: Прасолов, В. В. Геометрия Лобачевского. – М.: МЦНМО, 2000; Атанасян, Л. С. Геометрия Лобачевского. – М.: Просвещение, 2001 и т. п.
Другой пример: «Расширение понятия числа». Из такого названия совсем неясно, какая же методическая проблема рассматривается в данной работе, каковы её цель и назначение.
Ещё несколько неудачных, с этой точки зрения, формулировок тем научно-методических исследований.
Развитие логического мышления учащихся на уроках математики.
Формирование познавательного интереса школьников при обучении математике.
Обучение элементам наглядной геометрии.
Преподавание темы «Прогрессии».
Курс по выбору «Теорема Эйлера и её приложения» и т. п.
III. Тема не должна быть «широкой», она не должна носить общий характер.
Приведём конкретные примеры.
1. Формирование универсальных учебных действий при обучении в основной школе.
Что здесь имеется в виду? Этой теме посвящена известная книга «Формирование универсальных учебных действий в основной школе: от действия к мысли» (под ред. А. Г. Асмолова. – 2-е изд. – М.: Просвещение, 2011). Это фундаментальное исследование авторского коллектива, в котором изложены методология и модель программы развития универсальных учебных действий. На основе этого определены функции, содержание универсальных учебных действий, дана их общая характеристика и способы их формирования в образовательном процессе.
2. Основы личностно-ориентированного образования.
Существуют разные модели формирования личностно-ориентированного обучения, в том числе и по математике. Что предлагается исследовать? Возможно, структуру развивающейся личности обучающихся, или организацию индивидуальной траектории развития, или ценности, цели, задачи личностно-ориентированного образования. Имеется серьёзная работа И. С. Якиманской, которая так и называется «Основы личностно-ориентированного образования» (М.: БИНОМ. Лаборатория знаний, 2011).
3. Развитие мышления школьников при обучении математике.
В этом названии, по сравнению с первыми, уточнено, об обучении какому предмету идёт речь. Но возникает другой вопрос: «О каком мышлении рассуждает автор: активном, продуктивном, самостоятельном, творческом или математическом, пространственном, логическом, образном и т. п.?»
4. Интеллектуальное воспитание на уроках геометрии.
Это название скорее подходит для фундаментального труда. Имеется, например, монография Л. И. Боженковой «Интеллектуальное воспитание учащихся при обучении геометрии» (Калуга: Изд. КГПУ им. К. Э. Циолковского, 2007).
5. Деятельностный подход в обучении математике.
Это название тоже больше соответствует монографическому труду, например: Епишева, О. Б. Технология обучения математике на основе деятельностного подхода. – М.: Просвещение, 2003; Хуторской, А. В. Системно-деятельностный подход в обучении. – М.: Эйдос; Издательство Института образования человека, 2012.