Акустика на пальцах - страница 4



.

Когда фронт волны (участок этого расходящегося конуса) пролетит мимо нас, мы услышим хлопок: сначала нас ударит область повышенного давления и сразу же перепонка отскочит назад областью пониженного. Чем выше летит сверхзвуковой самолет, тем дальше он пролетит мимо нас, пока мы услышим хлопок, и тем тише он будет для нас. И только после хлопка мы будем слышать звук от его двигателей. Так что, никакой звуковой барьер он не проходил – он просто летел, пока до нас не дошла ударная волна повышенного давления, которую гонят перед собой его крылья.

Кстати, иногда этот конус ударной волны виден, если воздух влажный: в ближней зоне у самолета, где образуется ударная волна, может сформироваться конденсат6.

Менее приятные эффекты с ударными волнами в воздухе известны при взрывных работах, военных обстрелах. Эти эффекты похожи в логике появления на молнию, но они часто рядом (поэтому воздействие сильное), зато более ожидаемы. Надо беречь барабанные перепонки, чтобы их не повредило перепадом давления. Для этого рекомендуют открывать рот. Это облегчает уравнивание давления с внешней и внутренней сторон перепонки. Но каналы до внутреннего уха узкие и довольно длинные, поэтому резкие перепады могут не успеть выравнять давление через рот. Лучше закрывать уши, защищая их от бросков давления ударной волны.

Ударные волны в воздухе неприятны, но часто терпимы. Зато в воде это чревато для жизни. Тело человека состоит преимущественно из воды, поэтому все звуковые волны в воде прекрасно проходят через него почти беспрепятственно, с минимумом отражений. Для эхолокации отражения от тела хорошо заметны, но удар по внутренним органам такое отражение не обезопасит. Водолаз7 в гидрокостюме с воздушной прослойкой защищен намного лучше. Воздух несопоставимо легче сжимается, что спасает при ударной волне. Но и ему в воде не поздоровится, потому что вода – плотная среда. Вода почти несжимаема, поэтому удар передаст без смягчения, а тонкая прослойка воздуха под гидрокостюмом – слабая защита.

Зато и двигаться в воде со сверхзвуковой скоростью практически невозможно, поэтому в воде ударные волны, действительно, от ударов, взрывов, сейсмических толчков. Один из наиболее известных видов последствия ударной волны в воде – это цунами. Правда, это не продольная волна, а поверхностная, и скорость ее не выше скорости звука. Поскольку вода практически несжимаема, порождаемое ударом давление преобразуется в мощный импульс поверхностной волны, которая разбегается от места удара. И не любое землетрясение породит цунами. Сдвиговые толчки породят только обычный звук, хотя и сильный.

Звуковые каналы для рыбаков и полуночных влюбленных

На природе мы чаще всего находимся в ситуации открытого пространства, т.е. звук или уходит от нас безвозвратно, или приходит прямиком от источника. Если вокруг есть препятствия, это другая ситуация в отношении звуковых закономерностей, например путешествия в горы или в пещеры. Акустика пещер принципиально не отличается от акустики помещений, поэтому пещеры обсуждать не будем, хотя там много интересного происходит. А в горах самый известный эффект – эхо. Чем дальше отражающее звук препятствие, тем сильнее задержка эха.

Попробуем оценить соотношение расстояний и времени отклика. Разрыв между собственным криком и эхом в 1 секунду уже хорошо заметен. Звук должен пролететь до препятствия и обратно. Считая скорость звука примерно 330 м/с, получаем дистанцию 150–170 метров. В ущелье эхо может быть множественным, потому что звук может отражаться от разных стенок и выступающих скал ущелья, пока не затухнет. Чем более скалистые стены ущелья, тем меньше затуханий. Чем более заросшие травой, деревьями и кустарниками, тем сильнее затухание и слабее эхо. Песок тоже неплохо поглощает звук, хотя и хуже растений.