Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… - страница 7
Далее данные превращаются в знания, которые потом объединяются какими-то связями (вот это событие произошло потому, что было вот то-то и то-то) на основании нашего взаимодействия с реальностью. Знаниями и опытом мы уже можем делиться с другими.
Аналитика может нам помочь уточнить наши взаимосвязи: как опровергнуть их наличие в реальности, так и обрисовать скрытые взаимосвязи, которых мы сами не замечали. Это формирует более целостную картину.
В итоге при взаимодействии данных, знаний, опыта и аналитической проверки у нас может родиться некое концептуальное представление реальности (какого-то объекта, процесса, явления, случая и т.д.) – модель.
Это не сама реальность – это только ее модель, наше представление о ней. Но на базе этой модели мы уже можем более эффективно обмениваться пониманием реальности с другими людьми, а также постоянно его уточнять, приращивая новые знания и устраняя пробелы.
Есть еще, конечно, креативная отсебятина (кстати, очень часто встречаемая в менеджменте, социально-экономических и гуманиртарных направлениях). Когда человек что-то увидел, чего-то нахватался – и из этого породил в голове какую-то ерунду и, уверовав в нее, обозвал некой моделью (рис. 9).
Рис. 9. Модели без опыта и аналитики зачастую имеют очень отдаленные связи с реальностью
Иногда, конечно, бывает, что из такого креатива рождаются ± верные модели. Но они все равно проверяются только опытом, аналитикой и самой реальностью.
Какая лучшая программа для анализа данных?
Существует ряд программ для анализа данных. От всем уже привычного Excel, до коммерческих продуктов типа SPSS, Statistica, OCA и вплоть до отдельного языка программирования R, созданного специально под аналитику. Есть и бесплатные аналоги дорогостоящего коммерческого программного обеспечения – например, программа PSPP как аналог SPSS.
В интернете есть ряд официальных инструкций, курсов, книг и самоучителей по той или иной аналитической программной среде (какие кнопки нажимать, где находится та или иная функция, где смотреть вывод результатов и т.д.).
Но главное – понимать, что все эти программы не заменители «головы» аналитика.
Это всего лишь инструментарий. Но, невзирая вроде на эту понятную истину, постоянно разворачиваются баталии на тему «какая программа лучше». Всегда хочется спросить о критерии «лучшести» – ведь каждая программа имеет свои плюсы и минусы, возможности и ограничения.
Решение об использовании той или иной программной среды – это на самом деле исключительно вопрос профессиональных и личных предпочтений.
Я, например, в своей практике использую несколько инструментов: подавляющая часть того, что я делаю, сделана в SPSS, ОСА и Excel.
SPSS и ОСА – поскольку привык ими пользоваться. Excel – потому, что удобен бизнеса и его может открыть, просмотреть и отследить логику формул любой бизнес-пользователь.
Для некоторых задач использую R. Но с языков программирования я бы не рекомендовал начинать не-техническим профессионалам. Это дольше, сложнее, да и вряд ли Вы в своей работе столкнетесь с настолько емкими задачами, чтобы не решить их более простым способом.
Потому, что использовать – больше будет зависеть от того, что Вы решите и осилите освоить. Однозначно в бизнесе (за исключением, если Вы профессиональный аналитик и это Ваша ежедневная работа) самым ходовым инструментом является Excel. Бизнес – это клеточки Excel.