Ātrā matemātika verbālās skaitīšanas noslēpumi - страница 4





Apskatīsim, kā darbojas metode skaitļu reizināšanai no 10 līdz 20. Ņemsim 13 x 14 kā piemēru, izmantojot 10 kā atsauces skaitli.

Gan 13, gan 14 ir lielāki (virs) atsauces skaitļa 10, tāpēc mēs zīmējam apļus virs faktoriem. Cik tie ir vairāk nekā atsauces numurs? Attiecīgi 3 un 4. Tāpēc mēs rakstām 3 un 4 apļos virs 13 un 14. 13 ir vienāds ar 10 plus 3, tāpēc skaitļa 3 priekšā ievietojam plus zīmi; 14 ir vienāds ar 10 plus 4, tāpēc skaitļa 4 priekšā ievietojam plus zīmi.

Tāpat kā iepriekš, salieciet to šķērsām. Gan 13 plus 4, gan 14 plus 3 ir vienādi ar 17. Aiz vienādības zīmes rakstām 17. Mēs reizinām 17 ar atsauces skaitli 10 un iegūstam 170 – tas ir mūsu starprezultāts, mēs to rakstām pēc vienādības zīmes.

Kā pēdējo soli mēs reizinām skaitļus apļos. 3 reizes 4 ir vienāds ar 12. Pievienojiet 12 līdz 170 un iegūstiet atbildi: 182. Šādi izskatās pilnībā atrisināts piemērs:

Ja skaitlis, kuru mēs reizinām, ir lielāks (lielāks) par atsauces skaitli, mēs novietojam apli virs skaitļa. Ja skaitlis ir mazāks (zem) no atsauces, zem skaitļa novelkam apli.

Ja skaitļi apļos ir lielāki par koeficientiem, mēs saskaitām šķērsām, ja tie ir mazāki, tad atņemam šķērsām.

Tagad mēģiniet pats atrisināt šādus piemērus:

a) 12 x 15 = ___; b) 13 x 15 = ___; c) 12 x 12 = ___; d) 13 x 13 = ___; e) 12 x 14 = ___; f) 12 x 16 = ___; g) 14 x 14 = ___; h) 15 x 15 = ___; i) 12 x 18 = ___; j) 16 x 14 = ___

Atbildes:

a) 180; b) 195; c) 144; d) 169; e) 168; f) 192; g) 196; h) 225; i) 216; j) 224

Ja kaut kur pieļāvāt kļūdu, vēlreiz izlasiet sadaļu un uzziniet, ko izdarījāt nepareizi, pēc tam mēģiniet vēlreiz atrisināt piemērus.

Kā jūs reizinātu 12 un 21? Apskatīsim šo piemēru.

Kā atsauces skaitli ņemam 10. Abi faktori ir lielāki par 10, tāpēc virs tiem zīmējam apļus. 12 ir lielāks par 10 reizi 2 un 21 reizi 11, tāpēc mēs ievadām 2 un 11 atbilstošajos apļos. 21 plus 2 ir vienāds ar 23, kas, reizinot ar 10, ir 230. 2 reiz 11 ir 22, kas, pieskaitot 230, ir 252.

Pilnībā atrisinātais piemērs izskatās šādi:

Skaitļu, kas ir lielāki par 100, reizināšana



Vai šo metodi var izmantot, lai reizinātu skaitļus, kas lielāki par 100? Protams.

Lai reizinātu 106 ar 104, izmantojiet 100 kā atsauces numuru.

Faktori ir lielāki par atsauces skaitli 100, tāpēc mēs apzīmējam apļus virs 106 un 104. Cik tie ir lielāki par 100? Par 6 un 4. Ierakstiet 6 un 4 apļos. Pirms tiem ir jābūt plus zīmei (tāpat kā pirms pozitīvajiem skaitļiem), jo 106 ir 100 plus 6 un 104–100 plus 4.

Salieciet to šķērsām. 106 plus 4 ir vienāds ar 110. Aiz vienādības zīmes ierakstīsim 110.

Sareizināsim 110 ar atsauces skaitli 100. Kā jebkuru skaitli reizināt ar 100? Pievienojiet divas nulles labajā pusē. Mēs iegūstam starprezultātu: 11000.

Tagad sareizināsim skaitļus apļos: 6 x 4 = 24. Pievienojiet rezultātu 11000 un iegūstiet 11024.

Pilnībā atrisinātais piemērs izskatās šādi:

Mēģiniet pats atrisināt dažus piemērus:

a) 102 x 114 = ___; b) 103 x 112 = ___; c) 112 x 112 = ___; d) 102 x 125 = ___

Atbildes:

a) 11628; b) 11536; c) 12544; d) 12750

Nedaudz praktizējot, jūs varēsiet atrisināt visus šādus piemērus bez pildspalvas un papīra. Tas būs ļoti iespaidīgi citu cilvēku acīs.



Piemēru risināšana galvā



Izmantojot iepriekš minēto pieeju, ļoti svarīgi ir tas, kas parādās jūsu prāta acīs vai tas, ko jūs sakāt sev. Tas var palīdzēt atrisināt problēmas vieglāk un ātrāk.