Ātrā matemātika verbālās skaitīšanas noslēpumi - страница 9



Tas nebija grūti, jo no pirmā reizinātāja izsvītrojām 4 un 5, un mums palika 6; tad no otrā faktora izsvītrojām 8 un 1, atstājot mums 3; un tad atbildē izdevās izsvītrot gandrīz visus ciparus.

Tagad redzēsim, ko mums dod aizstāšanas skaitļi. 6 reiz 3 ir vienāds ar 18, kuru cipari kopā ir 9, kurus var arī izsvītrot. Tas atstāj 0. Mūsu kontroles skaitlis ir 8. Tas nozīmē, ka mēs kaut kur pieļāvām kļūdu.

Atkārtoti atrisinot piemēru, mēs iegūstam 378936.

Vai šoreiz saņēmām pareizo atbildi? 936 var izsvītrot, pēc tam saskaitām pirmos trīs ciparus: 3 +7 +8 = 18, kas saskaita 9, kas arī atstāj 0, tāpēc to var izmest. Ir sakritība ar kontrolnumuru, kas nozīmē, ka šoreiz atbilde saņemta pareizi.

Vai devītnieku izmešanas metode pierāda, ka mums ir pareizā atbilde? Nē, bet mēs varam būt gandrīz droši, ka atbilde ir pareiza (skat. 16. nodaļu). Piemēram, pieņemsim, ka pēdējā piemēra atbildē mēs saņēmām 3789360, tā beigās kļūdaini pievienojot papildu nulli. Tas neatspoguļosies čekā, metot devītniekus, un mēs nevarēsim noteikt, vai ir pieļauta kļūda. Tomēr gadījumos, kad metodes izmantošana norāda uz kļūdu, mēs varam būt pilnīgi pārliecināti, ka tā ir.

Deviņnieku ripināšana ir vienkāršs un ātrs tests, kas ļauj viegli pamanīt kļūdas. Varat būt pārliecināts, ka metode palīdzēs atrisināt matemātikas pārbaudes darbus bez kļūdām.



Kā šī metode darbojas?



Padomājiet par skaitli un reiziniet to ar 9. Cik ir 4 reiz 9? 36. Saskaitīsim šī skaitļa ciparus (3 +6), un rezultāts būs 9.

Mēģināsim ar citu numuru. 3 reizes 9 ir vienāds ar 27. Saskaitiet skaitļus (2 +7) un atkal iegūstam 9.

11 reizes 9 ir 99. 9 plus 9 ir 18. Nepareiza atbilde? Ne tik ātri. 18 ir divciparu skaitlis, tāpēc saskaitīsim skaitļus vēlreiz: 1 +8. Atkal atbilde ir 9.

Ja jebkuru skaitli reizinat ar 9, iegūtā skaitļa summa vienmēr būs 9, ja turpināsiet pievienot ciparus, līdz iegūstat viencipara skaitli. Tas ir vienkāršs veids, kā noskaidrot, vai skaitlis dalās ar 9 bez atlikuma.

Ja skaitļa cipariem saskaita 9 vai tā daudzkārtni, tad pats skaitlis bez atlikuma dalās ar 9. Tieši tāpēc, ja jebkuru skaitli reizina ar 9 vai tā daudzkārtni, skaitļa cipari kas iegūts reizināšanas rezultātā, jāsaskaita 9 (līdz iegūstat viencipara skaitli). Piemēram, jums ir jāpārbauda, vai tālāk norādītais piemērs ir pareizi atrisināts:

135 x 83615 = 11288025

Saskaitīsim pirmā faktora skaitļus:

1 +3 +5 = 9

Lai pārbaudītu atbildi, mums nav jāpievieno otrā faktora (83615) cipari, jo mēs zinām, ka skaitļa 135 ciparu summa ir 9. Ja atbilde ir pareiza, arī tā cipariem ir jāsaskaita. līdz 9.

Atradīsim atbildes ciparu summu:

1 +1 +2 +8 +8 +0 +2 +5 =

Divreiz var izsvītrot 8 +1, atstājot 2 +2 +5, kas dod 9. Tātad, pārbaude parādīja, ka atbilde ir pareiza.

Var atklāt arī citas interesantas lietas.

Ja skaitļa cipariem tiek pievienots cits skaitlis, nevis 9, tad tas ir atlikums, ko iegūstat, dalot sākotnējo skaitli ar 9.

Ņemsim, piemēram, 14. 1 plus 4 dod 5. Tātad 5 ir skaitļu 14 summa. Tas ir atlikums, ko iegūstat, ja dalāt 14 ar 9. Pārbaudīsim: 14 tiek dalīts ar 9 vienreiz, un atlikums ir 14–9, kas veido 5. Ja skaitlim pievienojat 3, tad, dalot šo skaitli ar 9, atlikumam pievieno 3. Ja skaitli dubultojat, atlikums atkal dubultojas. Citiem vārdiem sakot, neatkarīgi no tā, ko jūs darāt ar skaitli, jūs to darāt ar atlikumu, dalītu ar 9, tāpēc šie atlikumi var kalpot kā aizstāšanas skaitļi.