Безопасный генератор случайных чисел. Научные основы и практическая реализация - страница 4
2.3. Преимущества квантовой случайности:
– Фундаментальная природа квантовой непредсказуемости, основанная на принципах квантовой механики, в отличие от классической псевдослучайности.
– Невозможность клонирования или предсказания квантовых состояний, что делает квантовую случайность неуязвимой для атак.
– Высокая энтропия и статистическая независимость квантовых случайных бит, что обеспечивает высокое качество генерируемых последовательностей.
– Потенциально высокая скорость генерации случайных чисел с использованием квантовых эффектов.
3. Возможные квантовые источники случайности:
3.1. Примеры квантовых устройств и датчиков для генерации случайности:
– Фотонные детекторы: Детектирование случайных флуктуаций в интенсивности лазерного излучения или в темновом токе фотодетекторов.
– Ядерные спины: Измерение случайных изменений в ориентации спинов ядер атомов, например, в ядерно-магнитном резонансе.
– Квантовые генераторы шума: Использование квантовых флуктуаций тока в электронных схемах, таких как резисторы и туннельные диоды.
– Радиоактивный распад: Детектирование случайных событий распада радиоактивных ядер.
– Квантовые явления в твердых телах: Использование эффектов квантового туннелирования, флуктуаций состояний электронов и других квантовых процессов в полупроводниковых и сверхпроводящих устройствах.
3.2. Интеграция квантовых источников в архитектуру генератора случайных чисел:
– Включение квантовых датчиков и детекторов в качестве основного источника случайности в генераторе.
– Применение методов квантовой обработки сигналов, таких как усиление, фильтрация и преобразование квантовых флуктуаций в цифровые случайные биты.
– Использование схем с избыточностью, верификацией и тестированием для повышения качества и надежности квантовых генераторов случайных чисел.
– Интеграция квантовых источников случайности с классическими алгоритмами постобработки для получения высококачественных, статистически независимых случайных последовательностей.
Описание возможных квантовых источников случайности;
1. Фотонные детекторы:
– Использование флуктуаций интенсивности лазерного излучения или темнового тока фотодетекторов для генерации случайности.
– Квантовые флуктуации в потоках фотонов создают истинный квантовый шум, который невозможно предсказать классически.
– Фотоумножители, лавинные фотодиоды и другие высокочувствительные фотодетекторы могут регистрировать эти квантовые флуктуации.
2. Ядерные спины:
– Использование случайных изменений ориентации спинов ядер атомов в ядерно-магнитном резонансе (ЯМР) в качестве источника случайности.
– Квантовые состояния спинов ядер характеризуются дискретными, непредсказуемыми значениями, которые могут быть измерены.
– Детектирование флуктуаций спиновых состояний посредством ЯМР-спектроскопии позволяет получать истинные случайные битовые последовательности.
3. Квантовые генераторы шума:
– Использование квантовых флуктуаций тока и напряжения в электронных схемах в качестве источника случайности.
– Примеры: шумы в резисторах, туннельные шумы в полупроводниковых приборах, флуктуации в сверхпроводящих контурах.
– Эти квантовые шумы являются фундаментальными и непредсказуемыми, в отличие от классических шумов.
4. Радиоактивный распад:
– Детектирование случайных событий распада радиоактивных ядер может служить источником квантовой случайности.
– Время наступления каждого события распада является истинно непредсказуемым на квантовом уровне.