Человек и ноосфера - страница 35



Картина, описанная для процессов, протекающих в неживом веществе, принципиально усложняется на уровне живой природы, ибо здесь появляется целеполагание – тенденция к самосохранению, стремление сохранить гомеостазис. Эта тенденция (не сводимая к законам физики) тоже может быть формализована совокупностью условий, каждое из которых допускает вариационную форму,

Фi(х)→min, где i=1,2,3…

Однако по отношению к этим функционалам в отличие от функционалов W>1 природа уже не дает правил для их автоматического ранжирования. В игру вступает новый фактор – естественный отбор. Значение функционалов Φi, определяющих гомеостазис в данных конкретных условиях обитания, различно с точки зрения обеспечения гомеостазиса. Для каждого живого существа возникает свой оптимальный способ поведения, то есть ранжирования функционалов, и каждое из них пытается его найти.

Естественный отбор закрепляет тех представителей, которым лучше других удается ранжировать приоритеты для сохранения гомеостазиса в данных конкретных условиях, другими словами, лучше приспособиться к внешней среде.

Все сказанное только что можно выразить и несколько иначе. Естественный отбор как бы сам формирует некоторый функционал и определяет его оптимальное значение, то есть наиболее выгодное поведение. При этом в отличие от функционала действия живое существо вовсе не обязательно должно реализовывать это оптимальное поведение. Однако чем ближе оно будет к этому оптимальному, тем лучше живое существо будет приспособлено к окружающей среде и тем больше у него шансов выжить в данных конкретных условиях.

Живая система, например популяция, существует во всегда изменяющейся внешней обстановке. Это значит, что непрерывно должен меняться и характер упорядоченности функционалов [Φi]. Таким образом, для любого живого существа, а тем более для живого мира, на множестве функционалов, определяющих гомеостазис того или иного вида, уже нет и не может быть однозначной раз и навсегда определенной упорядоченности, которая существует, как мы это видели, на множестве функционалов [Wi], то есть на множестве законов физики, которые никто нарушить не может.

Законы живого мира, не сводимые к законам физики, выполняются не столь жестоко, они могут нарушиться, но за их нарушение живое существо платит жизнью. В живом мире вступают в действие адаптационные механизмы, требующие непрерывной «переранжировки» элементов множества функционалов [Φi]. Живой организм, как это показал великий русский физиолог И. П. Павлов, приобретает систему рефлексов – условных и безусловных. Это и есть результат «установившейся» ранжировки, которая при изменившейся ситуации может оказаться трагичной.

Используя язык многокритериальной оптимизации, который был введен в этом параграфе, я могу сказать, что выработка рефлексов проводит необходимую ранжировку функционалов [Ф]] и устанавливает алгоритмы их локальной оптимизации. (В теории управления системы, обладающие четким алгоритмом обратной связи, называются рефлексными.)

В этой главе я выделил два класса механизмов развития: адаптационные и бифуркационные. Выработка рефлексов – это результат действия адаптационных механизмов. Любое постепенное изменение тех или иных свойств развивающихся систем (в том числе правила поведения отдельных членов популяции), происходящее под действием естественного отбора, – это тоже результат действия подобных механизмов. И каждый раз такие механизмы отыскивают некоторый локальный минимум. (Этот факт позволяет дать еще одно определение адаптационных механизмов на языке теории исследования операций: механизмы, реализующие алгоритмы поиска локальных экстремумов без прогноза изменений внешней среды, то есть лишь по информации об окружающей обстановке, полученной в данный момент, мы и будем называть адаптационными.)