Цитология и гистология - страница 5
где λ – длина световой волны.
Для более точного расчета используют формулу, учитывающую конструкцию объектива:
где n – показатель преломления среды между препаратом и фронтальной линзой объектива;
sin α – синус угла между оптической осью и наиболее сильно отклоняющимся лучом, который еще попадает в линзу объектива.
В микроскопических исследованиях используют следующие единицы измерения:
– 1мкм (микрометр)=1×10>-3 мм = 1×10>-6 м;
– 1 нм (нанометр) = 1×10>-3 мкм = 1×10>-6 мм = = 1×10>-9 м;
– 1 Å (ангстрем) = 0,1 нм = 1×10>-4 мкм = 1×10>-7 мм = 1×10>-10 м.
Из приведенных данных видно, что разрешающая способность световых микроскопов ограничена десятыми долями микрона (микрометра). Структуры клетки меньшего размера можно рассмотреть только с помощью электронного микроскопа. Подробное описание светового и электронного микроскопов дано в соответствующих руководствах и в курсе физики.
Ультрафиолетовая микроскопия – представляет собой разновидность световой. Длина волны ультрафиолетовых лучей составляет около 0,3 мкм; разрешающая способность микроскопа при иммерсионном объективе приблизительно 0,1 мкм.
Люминесцентная микроскопия основана на том, что многие органические вещества, содержащиеся в клетках, способны светиться (флуоресцировать) при поглощении ими световой энергии. Спектр флуоресценции постоянно смещен в сторону более длинных волн по отношению к изучению, возбуждающему флуоресценцию. Этот спектр лежит в пределах коротких волн (длина от 0,25 до 0,4 мкм). Например, хлорофилл зеленых растений в ультрафиолетовых лучах светится красным светом, а другие вещества – зеленым или желтым (то есть с более короткими волнами). Этот принцип использован при создании люминесцентных микроскопов. Источником света в них служат ксеноновые или ртутные лампы (их спектр близок к ультрафиолетовому излучению), а объект исследуют через специальные фильтры.
Собственной, или первичной, флуоресценцией обладают пигменты (в том числе бактерий), витамины А и В>2, индоламины и некоторые другие вещества. Существует вторичная, или вызванная, флуоресценция. Чтобы ее получить, используют специальные вещества – флуорохромы, которые связываются различными структурами живой клетки и вызывают их флуоресценцию. Например, при обработке срезов тканей флуорохромом акридиновым оранжевым дезоксирибонуклеиновая кислота (ДНК) и ее производные приобретают яркозеленое свечение, а рибонуклеиновая кислота (РНК) и ее производные – яркокрасное. Разновидностью вторичной является флюоресценция желто-зеленого цвета, индуцированная парами формальдегида и характерная для катехоламинов (адреналин и норадреналин) мозгового вещества надпочечников. Таким образом, можно исследовать химический состав тканевых структур, выявлять трофические и секреторные включения в клетках.
Электронная микроскопия. В электронном микроскопе используются электронные лучи с более короткими, чем в световом микроскопе, длинами волн при напряжениях от 50000 до 100000 В. Длина волны электромагнитных колебаний, возникающих при движении потока или пучка электронов в условиях вакуума равна 0,0056 нм. Таким образом, разрешение достигает 0,002 нм или 0,000002 мкм, что в 100000 раз выше, чем в световом микроскопе. Разрешающая способность современных отечественных электронных микроскопов (ЭМВ-200, 300) и зарубежных (фирм Хитачи, Филипс) составляет не более от 1 до 5 А, однако на практике она не превышает от 0,2 до 0,5 нм, а для большинства биологических объектов от 1 до 2 нм. Методом электронной микроскопии исследуют ультратонкие срезы, толщиной от 500 до 1000 А, которые готовят на ультратомах – сложных электронных приборах, где ножами служат очень острые грани сломов зеркального стекла. Тончайшие срезы наносят на специальные металлические сетки с ячейками и помещают в вакуумную камеру электронного микроскопа. Обработка образцов тканей для ЭМ сходна с ранее описанной обработкой для световой микроскопии. Только здесь в качестве фиксаторов используют забуференные растворы параформа, тетроксида осмия, глютаральдегида (рН 7,0 – 7,4); образцы проводят через спирты восходящей концентрации и пропилен-оксид и заливают в синтетические смолы (аралдит, эпон или в их смесь). Чтобы более четко выявить, органеллы мембранного и немембранного типа в качестве контрастера применяют цитрат свинца и уранилацетат.