Data Science для карьериста - страница 2



• В главе 12 объясняется, как общаться со стейкхолдерами, – дата-сайентисты занимаются этим чаще, чем большинство других технических специалистов.

В четвертой части, «Как подняться по карьерной лестнице в Data Science», рассматриваются темы для более опытных специалистов, которые ищут способ профессионально вырасти:

• Из главы 13 вы узнаете, что делать с неудавшимися проектами Data Science.

• В главе 14 показано, как стать частью более широкого сообщества дата-сайентистов с помощью участия в конференциях и разработки открытого исходного кода.

• Глава 15 представляет собой руководство по принятию сложного решения об уходе с должности специалиста Data Science.

• Глава 16 – заключительная; в ней рассказывается о должностях, которые могут получить дата-сайентисты по мере продвижения по карьерной лестнице.

Наконец, в приложении мы собрали для вас более 30 вопросов, которые можно услышать во время интервью, а также предложили примеры хороших ответов. Мы пояснили, какие навыки оцениваются при каждом вопросе и как на них лучше отвечать.

Если вы новичок в области Data Science, то начинайте читать с самого начала, а если вы уже работаете в этой сфере, то переходите сразу к той главе, которая предлагает решение вашей текущей задачи. Несмотря на то что последовательность глав соответствует развитию карьеры в этой сфере, их можно читать в произвольном порядке в соответствии с вашими потребностями.

В конце каждой главы – интервью со специалистами, занятыми в разных индустриях. Они рассказывают, как рассмотренные вопросы коснулись их в работе. Мы выбрали тех специалистов, которые внесли весомый вклад в развитие Data Science и которым пришлось пройти интересный путь прежде, чем стать профессионалами.

От издательства

Карьера в Data Science не зависит от страны, в которой вы живете и учитесь. Чтобы двигаться вперед, необходимо лучше понимать, чего от вас ждет работодатель или хедхантер.

Ваши замечания, предложения, вопросы отправляйте по адресу comp@piter.com (издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!

На веб-сайте издательства www.piter.com вы найдете подробную информацию о наших книгах.

Об авторах

Эмили Робинсон

Написала Жаклин Нолис


Эмили Робинсон – блестящий старший дата-сайентист в компании Warby Parker; ранее она работала в DataCamp и Etsy.

Впервые я встретила Эмили на Data Day Texas 2018, когда она была одной из немногих слушательниц моего доклада о Data Science в индустрии. В конце моего выступления она подняла руку и задала прекрасный вопрос. К моему удивлению, через час мы поменялись местами – теперь уже я слушала, как она спокойно проводила восхитительную презентацию, и с нетерпением ждала возможности поднять руку и задать ей вопрос. В тот день я уже поняла, какой она трудолюбивый и умный специалист. Несколько месяцев спустя, когда пришло время искать соавтора для моей книги, Эмили Робинсон была первым кандидатом в списке на эту роль. Отправляя ей электронное письмо, я думала, что мне, скорее всего, откажут: она, пожалуй, была «не моего уровня».

Работа с Эмили над этой книгой была сплошным удовольствием. Она очень заботится о трудностях младших специалистов по работе с данными, а еще у нее есть способность четко выделять важное. Она всегда качественно выполняет свою работу и каким-то образом умудряется одновременно писать статьи в блогах. Наблюдая за ней на других конференциях и общественных мероприятиях, я видела, как она общалась со многими дата-сайентистами, каждый из которых чувствовал себя с ней комфортно. Она также является экспертом в области A/B-тестирования и экспериментирования, хотя ясно, что для нее это просто временный этап. При желании она могла бы взять любую другую область DS и стать в ней экспертом.