Экология. Повреждение и репарация ДНК: учебное пособие - страница 6



), В результате этого в транскрибируемой ДНК каждый раунд репликации появляются приблизительно 3 ошибки, подлежащие коррекции. При работе другой системы репарации непроцессивные безнуклеазные сверхошибочные (ошибочность 10>-2) ДНК-полимеразы ведут синтез ДНК в обход повреждений в ДНК-матрице. После завершения синтеза на поврежденной матрице они должны быть заменены, по-видимому, с помощью репликативного фактора С, на основную элонгирующую ДНК-полимеразу δ (ошибочность 10>-5). Но в силу той же инерционности биохимических реакций замена не происходит мгновенно, что требует исправления ошибок (совершенных непроцессивными полимеразами напротив неповрежденной матрицы), в том числе с участием автономных экзонуклеаз. В экстрактах клеток человека недавно показана экзонуклеазная коррекция ошибок, допущенных сверхошибочной ДНК-полимеразой η (эта). Наконец, автономные экзонуклеазы участвуют в коррекции гетеродуплексов.

Все виды экзонуклеазной коррекции должны закончиться за время данной репликации. По-видимому, коррекция ДНК-полимеразных ошибок – весьма эффективный процесс, поскольку анализ генома человека показал, что дивергенция последовательностей в транскрибируемой ДНК составляет примерно 0,1 % при исследовании ДНК от 24 человек различных этнических групп.

2. Типы повреждений ДНК

Большинство повреждений ДНК не являются результатом только ошибок репликации. Множество повреждений возникает в любое время клеточного цикла под действием как экзогенных, так и эндогенных факторов. В табл. 1. схематично изображены основные типы повреждений ДНК, которые опознаются и устраняются различными системами репарации.

Ультрафиолетовые лучи вызывают образование пиримидиновых димеров, 6,4-фотопродуктов, аддуктов, разрывов и прочие повреждения ДНК. Под действием химических агентов происходят разного рода модификвции нуклеотидов, возникают межнитевые сшивки, конформационные дефекты. Двунитевые разрывы могут приводить к перестройкам хромосом, что и является главной причиной летального действия ионизирующей радиации.


Таблица 1. Основные типы повреждений ДНК.



В результате внутриклеточных процессов в ДНК образуются многочисленные АP-сайты из-за спонтанной утраты пуринов/пиримидинов, окисленные участки (например, 8-оксигуанин), возникающие под действием токсических радикалов, постоянно генерируемых в процессах метаболизма.

Следует заметить, что все повреждения показаны только схематически, так как любое из них вызывает локальное изменение структуры ДНК вокруг, а разрывы ДНК почти всегда сопровождаются и модификацией прилежащих к ним оснований. Кроме обычно упоминаемых пиримидиновых димеров, под действием УФ облучения образуются и другие повреждения, например, 6,4-фотопродукты. В дальнейшем, описывая различные системы репарации ДНК, мы будем подробно останавливаться на тех типах повреждений, которые они способны исправлять.

3. Многообразие систем репарации ДНК

Системы репарации ДНК крайне разнообразны – от простых одноэтапных (фотореактивация, деалкилирование) до сложнейших, многоэтапных механизмов, контролируемых большим числом генов и, включающих соответственно, большое число белков. Этим репарация принципиально отличается от процессов репликации и рекомбинации, обходящихся существенно более ограниченным набором биохимических реакций. Множественность частично перекрывающихся и дополняющих друг друга систем репарации, даже некоторая их избыточность, повышает надежность защиты генома и расширяет возможности обеспечения его работы в онтогенезе и при различных физиологических условиях. Классификация процессов репарации ДНК строится на тех реакциях, которые являются их основой. Выделяются реакции прямой репарации, системы эксцизионной репарации ДНК, репарация с привлечением рекомбинации, пострепликативная репарация, репарация двунитевых разрывов, репаративный обход повреждения, причем иногда один и тот же тип репарации может иметь несколько разных названий. В результате исследований последних лет эта классификация менялась и уточнялась, что мы в дальнейшем будем учитывать.