Электроника и электротехника. Шпаргалка - страница 6
Важную роль играет и тот факт, что расчет цепей, где ЭДС, напряжение и ток изменяются синусоидально, значительно проще, чем расчет цепей, где указанные величины изменяются по несинусоидальному закону.
Рассмотрим механизм возникновения и основные соотношения, характерные для синусоидальной ЭДС.
Для этого удобно использовать простейшую модель – рамку, вращающуюся с постоянной угловой скоростью в равномерном магнитном поле. Проводники рамки, перемещаясь в магнитном поле, пересекают его, и в них на основании закона электромагнитной индукции наводится ЭДС. Значение ЭДС пропорционально магнитной индукции B, длине проводника l и скорости перемещения проводника относительно поля υt : е = Blυt.
Выразив скорость υt через окружающую скорость υ и угол α, получим: е = Blυ sin α = Em sin α.
Угол α равен произведению угловой скорости рамки ω на время t: α = ωt.
Таким образом, ЭДС, возникающая в рамке, будет равна: е = Em sin α = Em sin ωt.
За один поворот рамки происходит полный цикл изменения ЭДС.
Если при t = 0 ЭДС е не равна нулю, то выражение ЭДС записывается в виде:е = Em sin (ωt + y),
где e – мгновенное значение ЭДС (значение ЭДС в момент времени t);
Em – амплитудное значение ЭДС (значение ЭДС в момент времени );
(ωt + ψ) – фаза;
ψ – начальная фаза.
Фаза определяет значение ЭДС в момент времени t, начальная фаза – при t = 0.
Время одного цикла называется периодом T, а число периодов в секунду – частотой f:
Единицей измерения частоты является c–1, или герц (Гц). Величина
в электротехнике называется угловой частотой и измеряется в рад/с.
Частота вращения рамки n и частота ЭДС f связаны между собой соотношением:
откуда
13. ЦЕПЬ, СОДЕРЖАЩАЯ КАТУШКУ С АКТИВНЫМ СОПРОТИВЛЕНИЕМ R И ИНДУКТИВНОСТЬЮ L
Реальная катушка любого электротехнического устройства обладает определенным активным сопротивлением r и индуктивностью L. Участок цепи с индуктивностью L будем рассматривать как участок, обладающий индуктивным сопротивлением x>l. Уравнение напряжений, составленное по второму закону Кирхгофа для цепи с r и L, имеет вид:Ū = Ū>r+ Ū>l.
Рис. 15. Цепь, содержащая катушку с активным сопротивлением R и индуктивностью
На векторной диаграмме (рис. 15б) вектор U>r совпадает с вектором тока, а вектор U>l опережает вектор тока на 90°.
Из диаграммы следует, что вектор напряжения сети равен геометрической сумме векторов U>rи U>l. Ū = Ū>R+ Ū>L, а его значение
Выразив напряжения через ток и сопротивления, получим
Последнее выражение представляет собой закон Ома цепи (рис. 15г):
где z – полное сопротивление цепи.
Из векторной диаграммы следует, что напряжение цепи опережает по фазе ток на угол р и его мгновенное значение равно: υ = U>msin (ωt + φ).
Графики мгновенных значений напряжения и тока цепи изображены на рисунке 15в.
Угол сдвига по фазе φ между напряжением и вызванным им током определяют из соотношения:
График p>a(t) показывает, что активная мощность непрерывно поступает из сети и выделяется в активном сопротивлении в виде теплоты. Она равна:
Мгновенная мощность, обусловленная энергией магнитного поля индуктивности, циркулирует между сетью и катушкой. Ее среднее значение за период равно нулю:
14. ЦЕПЬ, СОДЕРЖАЩАЯ РЕЗИСТИВНЫЙ И ЕМКОСТНОЙ ЭЛЕМЕНТЫ
Участок цепи с емкостью С будем представлять как участок, обладающий емкостным сопротивлением xc.
В этом случае уравнение напряжений цепи (рис. 16а) имеет вид: Ū = Ū>r+ Ū