Энциклопедия финансового риск-менеджмента - страница 15
Так как
то полагаем α>1 = 0,06, β>1 = 0,07. Промежуток (α>1, β>1) разделим на 10 равных частей:
Заметим, что P(0,066) = 7000,5057 > 7000; P(0,067) = 6993,3546 < 7000. Значит, можно считать, что α>2 = 0,066, а β>2 = 0,067.
Используя линейную интерполяцию, получим, что
Так как Р(0,06607) = 7000,005, то искомая внутренняя доходность составляет 6,607 %.
Если по данному финансовому инструменту приходится только один платеж, то его внутренняя доходность при начислении процентов m раз в год может быть найдена по формуле:
где С – размер платежа по финансовому инструменту;
Р – рыночная цена финансового инструмента;
Т – срок платежа по финансовому инструменту.
1.5. Котируемая цена купонных облигаций
Купонной облигацией (coupon bond) называют финансовый инструмент, по которому периодически выплачиваются купонные проценты вплоть до погашения и номинальная стоимость в момент его погашения.
Отношение суммы купонных платежей за год к номинальной стоимости облигации называют купонной ставкой облигации (coupon rate).
Если f – купонная ставка облигации, то размер одного купонного платежа может быть найден по формуле:
где q – размер купонного платежа;
А – номинальная стоимость облигации;
m – количество купонных выплат за год.
Пример 1.10. Дана 9 %-ная купонная облигация с полугодовыми купонами и номинальной стоимостью 1000 долл. Определим поток платежей по облигации, когда до ее погашения остается 2,25 года.
В данном случае f = 0,09, А = 1000 долл., m = 2. Значит,
и поток платежей по облигации имеет вид:
Цена купонной облигации должна совпадать с приведенной стоимостью потока платежей, обещаемых по этой облигации. Чтобы определить приведенную стоимость потока платежей, необходимо знать ставку дисконтирования, которая в данном случае является требуемой доходностью (required yield).
Требуемая доходность для данной купонной облигации устанавливается на основе исследования внутренних доходностей финансовых инструментов, сравнимых с данной купонной облигацией. При этом учитываются такие факторы, как кредитный рейтинг эмитентов, ликвидность финансовых инструментов и т. д.
Котируемая цена (clean price) купонных облигаций определяется в моменты времени, когда происходят выплаты очередных купонных платежей. Котируемая цена купонной облигации с полугодовыми купонами может быть найдена по формуле:
где P – котируемая цена облигаций;
r – требуемая доходность;
А – номинальная стоимость облигации;
n – количество купонных платежей, остающихся до погашения облигации.
Пример 1.11. Найдем цену 9 %-ной купонной облигации, номинальной стоимостью 1000 долл., когда до ее погашения остается 20 лет, а требуемая доходность составляет 8 %.
В данном случае A = 1000 долл., f = 0,09,
Котируемую цену облигации можно найти по формуле (1.18):
Говорят, что купонная облигация продается по номиналу (par value), если ее котируемая цена совпадает с номинальной стоимостью. Купонная облигация продается по номиналу тогда и только тогда, когда купонная ставка облигации равна требуемой доходности.
Облигация продается с премией (at a premium), если ее котируемая цена выше номинальной стоимости. Купонная облигация продается с премией тогда и только тогда, когда купонная ставка выше требуемой доходности. Размер премии для облигаций с полугодовыми купонами составляет:
Говорят, что купонная облигация продается с дисконтом (at a discount), если ее котируемая цена ниже номинала. Облигация продается с дисконтом тогда и только тогда, когда купонная ставка облигации меньше требуемой доходности. Размер дисконта можно найти следующим образом: