Фабрика планет. Экзопланеты и поиски второй Земли - страница 16



Песчинка пыли состоит из молекул, например льда или силиката, которые нейтральны и не имеют ни общего положительного, ни общего отрицательного электрического заряда. Каждая из этих молекул состоит из двух или более атомов, в центре которых находится положительно заряженное ядро, окруженное отрицательно заряженными электронами. Однако электроны не статичны. Напротив, они перемещаются по молекуле, в результате чего там, где они собираются на короткое время, появляется небольшой отрицательный заряд, тогда как противоположная сторона молекулы становится положительно заряженной. Отрицательно заряженный конец молекулы может притягивать положительно заряженный конец соседней молекулы, удерживая их вместе. Эту силу, обусловленную небольшой асимметрией электрических зарядов, называют вандерваальсовой силой в честь голландского ученого Йоханнеса Дидерика Ван-дер-Ваальса. Сама по себе эта сила достаточно слаба и потому эффективна только при очень легких столкновения частиц пыли. В остальных случаях мы сталкиваемся (метафорически и буквально) с проблемами.

В масштабах микрометров первоначальное беспорядочное движение частиц пыли происходит настолько медленно, что вандерваальсовых сил оказывается достаточно для того, чтобы удерживать сталкивающиеся частицы вместе. Проблема в том, что частицы пыли увеличиваются в размерах, а значит, увеличивается и скорость столкновения. Как только микрометровые частички становятся миллиметровыми гигантами, вандерваальсовы силы уже не могут их удерживать. В результате при столкновении частицы отскакивают.



Когда две частицы пыли отскакивают друг от друга, они не увеличиваются. Поэтому при переходе от микрометрового масштаба к миллиметровому рост частиц прекращается. В итоге образуется множество миллиметровых частиц.

То есть, как это ни печально, процесс формирования планеты заходит в тупик, выйти из которого можно только в том случае, если по какой-то случайности нескольким частицам пыли удастся перейти в сантиметровую лигу. В ходе лабораторных экспериментов было показано, что при столкновении двух частиц с достаточной большой разницей в размерах меньшая частица отскакивает, но при этом теряет половину своей массы. Представьте, что вы бросаете в своего брата комок желе. Разумеется, значительная его часть окажется на полу. Но и на лице брата останется немало. Поэтому, когда сантиметровые частицы оказываются в облаке миллиметровой пыли, они начинают набирать массу за счет столкновений с частицами пыли.

Несмотря на очевидный потенциал, предложенное объяснение не дает ответа на вопрос о том, как появляются сантиметровые частицы пыли. Фактически существует два пути преодоления проблемы отскакивания. Первый – слепая удача. Да, средняя скорость столкновений между частицами пыли возрастает с увеличением их размера, но при этом все равно остается определенный диапазон значений, в рамках которого некоторые столкновения могут проходить на достаточно низких скоростях, обеспечивающих формирование сантиметровых частиц пыли за счет действия вандерваальсовых сил. Согласно второму подходу, отскакивание перестает быть проблемой, когда мы имеем дело с чем-то, имеющим рыхлую структуру.

Представьте, что вы бросаете в стену резиновый мяч. Если вы хорошо прицелитесь, мяч отскочит от стены прямо вам в нос. Теперь представьте, что вместо стены – гигантский комок пыли и пуха, который обычно незаметно скапливается под диваном. Брошенный вами мяч скорее пролетит через такой комок пыли, чем отскочит от него. Если ком достаточно большой, мяч просто-напросто застрянет в его пушистых недрах и станет частью его структуры.