Физика без камней в голове - страница 17
Автором показано, что теория Ньютона применима не только в масштабах космоса¸ но также применима и в масштабах микромира. Принято считать, что в масштабах микромира силы гравитации ничтожно малы, и их можно не учитывать. Однако закон Ньютона не накладывает ограничения на величину силы гравитации, подобно тому, как закон Кулона не накладывает ограничения на силу кулоновского взаимодействия электрических зарядов, если расстояние между ними стремится к нулю. Ограничения на величину силы гравитации может быть наложено только условиями квантования. Следовательно, должен быть гравитационный аналог комптоновской длины волны как наименьшего расстояния в электромагнитных взаимодействиях. Применимость закона Ньютона в масштабах микромира показана автором на примере строения дейтрона как простейшего составного ядра.
Пьер-Симон Лаплас (1749 – 1827)
Лаплас развил методы небесной механики на основе закона всемирного тяготения Ньютона. Он доказал, что этот закон полностью объясняет движение планет. Из теоремы Лапласа об устойчивости Солнечной системы следует, что возмущающие факторы не вызывают вековых изменений параметров орбит, влияющих на их устойчивость. Эти параметры совершают колебания относительно средних значений. Изменения претерпевают параметры орбит, не влияющие на их устойчивость. Это положение было использовано автором при оценке влияния космического вакуума как материальной среды на движение планет, а именно, на смещение долготы перигелиев Меркурия и Марса – двух планет, у которых погрешности наблюдений приемлемы для анализа.
Влияние космического вакуума как среды происходит на фоне более сильных гравитационных возмущений от других планет, и оно может быть причиной векового смещения перигелиев планет. Тогда аномальное смещение перигелия Меркурия и других планет можно объяснить влиянием вакуума в рамках теории Ньютона, если учесть факторы, которые ранее не были известны Эйнштейну и другим исследователям, занимавшимся этой проблемой. Это свойства вакуума как материальной среды и движение Солнца в космическом пространстве. Совокупное влияние этих возмущающих факторов приводит к возникновению космического ветра, который, как показано автором, вызывает вековое изменение долготы перигелиев планет.
Другой полученный Лапласом и использованный автором результат связан с определением скорости распространения гравитации. Нижний предел был установлен Лапласом в 1787 г. Исследовав причины векового ускорения Луны, он сделал вывод о том, что скорость гравитацииυ>g не менее чем в 50 млн. раз превышает скорость света. Следует отметить, что здесь важна не точность полученной Лапласом величины υ>g, а обоснование того, что скорость гравитации на много порядков превышает скорость света. Если учесть, что весь опыт расчётов положения планет в небесной механике базируется на статической формуле Ньютона, подразумевающей бесконечную скорость гравитации, следует считать оценку Лапласа более верной, нежели постулированное Эйнштейном значение υ>g, равное скорости света.
Джеймс Клерк Максвелл (1831 – 1879)
Максвелл был убежден в существовании материальной среды, через которую распространяются взаимодействия между телами. Вот, что он писал в своем Трактате об электричестве и магнетизме:
«Во всех теориях естественно встает вопрос: если нечто передается от одной частицы к другой на расстоянии, то каково его состояние после того, как оно покинуло одну частицу, но еще не достигло другой? Если это нечто есть потенциальная энергия двух частиц, как в теории Неймана, то, как мы можем понять существование этой энергии в точке пространства, не совпадающей ни с той, ни с другой частицей? Действительно, как бы энергия не передавалась от одного тела к другому во времени, должна существовать среда, в которой находится энергия, после того, как она покинула одно тело, но еще не достигла другого, ибо энергия, как отмечал Торичелли, есть квинтэссенция такой тонкой природы, что она не может содержаться в каком-либо сосуде, кроме как в самой сокровенной субстанции материальных вещей. Следовательно, все эти теории ведут к понятию среды, в которой имеет место распространение, и если мы примем эту гипотезу, я думаю, она должна занять выдающееся место в наших исследованиях и следует попытаться построить мысленное представление её действия во всех подробностях; это и являлось моей постоянной целью в настоящем трактате» [13, с. 380].