Физика на ладони. Об устройстве Вселенной – просто и понятно - страница 26



>→; = F>→;/ m поможет нам это понять.

Оно означает, что ускорение объекта зависит от его массы (= от его инертности) и от силы, действующей на него. Между тем электростатическая сила в том числе зависит от заряда объекта. Так, чем мощнее заряд и чем меньше масса объекта, тем сильнее будет его ускорение. Таким образом, при взаимодействии с одним и тем же заряженным телом два различных объекта будут иметь разное ускорение.

В случае с гравитацией ее сила пропорциональна массе объекта, что уравновешивалось его инертностью: при взаимодействии с одним и тем же массивным телом два различных объекта будут иметь одинаковое ускорение.

И вот перед нами величайшая тайна: почему ускорение объекта, на который действует только электростатическая сила, зависит от его массы, если масса связана с гравитацией, а не с электростатикой? Внимательный читатель заметит, что речь идет о тайне гравитационной и инертной масс, но в несколько другом аспекте.

Итак, есть гравитационная составляющая (масса) в электростатическом взаимодействии, но нет никакого составляющего электростатики (нет заряда) в гравитационном взаимодействии. Откуда же такое отличие?

Другое существенное отличие: заряженные тела могут притягиваться или отталкиваться в зависимости от знака их заряда, в то время как массивные тела могут только притягиваться, потому что все массы обладают одним знаком. Но куда же подевались объекты с отрицательной массой?

Невзирая на эти различия и нестыковки, между двумя силами все-таки существует сильная связь, и невольно хочется думать, что обе они суть проявление некой единой силы, управляющей Вселенной. Как мы указывали во введении, можно понять, почему объединение двух основополагающих сил в одну является одной из величайших целей физики XXI в.

ОТРИЦАТЕЛЬНАЯ МАССА ВО ВСЕЛЕННОЙ

Аналогии между электростатикой и гравитацией, естественно, заставляют нас задуматься о том, какой была бы Вселенная, в которой существовали бы положительная и отрицательная массы, подобно тому как существуют положительный и отрицательный заряды.

Тело с отрицательной массой все бы отталкивало, а тело с положительной массой все бы притягивало[3]. В итоге началась бы бесконечная гонка между положительными массами, убегающими от отрицательных, которые они притягивают[4].

С другой стороны, в случае с отрицательной массой два тела с одинаковым знаком массы притягивались бы, а с противоположным знаком отталкивались бы, что создавало бы огромное количество тел с одинаковым знаком массы, которые свели бы на нет всю гравитацию.

В подобной вселенной не могла бы сформироваться планета, на которой есть жизнь. Так что не стоит жалеть, что в нашей вселенной отрицательной массы не существует.

Если электростатическая сила кажется настолько мощной по сравнению с гравитацией, видимое отсутствие в природе заряженных тел делает из нее силу, которая кажется почти анекдотической. Все дело в том, что мы рассматриваем ее не в том масштабе.

Как мы видели, сила притяжения становится ощутимой только в случае с телами значительной массы, такими как планеты, их естественные спутники и звезды. Именно поэтому в предыдущем разделе мы заострили внимание на крупных объектах, то и дело обращаясь к открытому космосу.

Однако с электростатической силой все обстоит наоборот: она проявляет себя на микроскопическом уровне. Однако микроскопический мир, несмотря на всю его близость, очень мало знаком нам, ибо мы не можем наблюдать его невооруженным глазом (в отличие от Луны, Солнца и звезд). Вот почему мы совершим небольшой обзор мира малых величин, который нас окружает, чтобы понять, почему электростатическая сила является вездесущей.