Физика окружающей среды - страница 13
Энергия, преобразованная в биомассу, рассеивается дальше по звеньям трофической (пищевой) цепи. Растения являются первичным продуктом преобразования энергии и называются продуцентами, живые организмы, потребляющие растительную пищу представляют вторичный продукт этого процесса и называются консументами (от английского слова consumption – потребление); организмы, перерабатывающие отходы продуцентов и консументов, представляют собой класс редуцентов.
Таким образом, редуценты замыкают цикл преобразования энергии и материи в биосфере (рисунок 8).
Рис. 8. Преобразование энергии в биосфере
В каждом из звеньев трофической цепи происходит накопление и рассеяние энергии.
Мощность потока солнечной энергии, достигающий поверхности Земли, равен 1000 Вт/м>2. Эта энергия, как показано в таблице, распределяется между многими видами движения органической и неорганической материи.
Таблица 6
Глобальные потоки энергии
Эти данные представляют большой интерес тем, что показывают распределение энергии в разных частях биосферы и дают возможность оценить энергоресурсы, которые могут быть использованы человечеством.
Распределение энергии по звеньям трофической цепи можно оценить, пользуясь уравнением фотосинтеза:
6СО>2 + 6Н>20 + 8 фотонов C>6H>12O>6 +6О>2.
Академик К. А. Тимирязев в 1875 году определил количество фотосинтетической энергии радиации Солнца (8 молей фотонов на частоте красной и сине-зеленой области спектра) равно 16,8 10>6 Дж. Эта энергия необходима для связывания одного моля СО>2 и преобразования его в органику, количество которой эквивалентно 4,8 10>5 Дж. Отсюда максимальный теоретический КПД фотосинтеза равен 0,3. Эта величина не учитывает расход энергии на образование меж молекулярных связей, на образование более сложных структур, например клеток, на дыхание, испарение и т. п.
С другой стороны, эффективность преобразования солнечной энергии в биомассу можно получить, если рассматривать ее как отношение чистой первичной продукции (реальный прирост массы растений – Р>1) к энергии фотосинтетической радиации – W>ф. При таком расчете получается, что эффективность:
η>ф = Р>1/W>ф ≤ 0,05
Это очень важная величина, показывающая принципиальное ограничение повышения урожайности. Однако, тот факт, что для многих видов сельскохозяйственного производства у нас этот коэффициент на порядок ниже, дает уверенность в возможности решения продовольственной программы без увеличения площадей.
Как видно из сказанного, энергетика фотосинтеза довольно проста. Однако ситуация чрезвычайно усложняется при переходе к анализу энергетики экосистем, состоящих из трофических цепей разной сложности.
Трудность состоит в том, что первичная энергия на входе в биосистему идет не только на производство биомассы. Часть ее расходуется на дополнительные процессы, такие, как дыхание, транспирация (испарение при дыхании), экскреция. На дыхание уходит 1/3 первичной энергии W>ф. Для анализа энергетики трофических цепей вводят две величины продуктивность (валовая продукция) и продукция (чистая продукция – биомасса). Можно бы упростить задачу, отбросив дополнительные потери энергии. Но при этом можно потерять некоторые и даже многие звенья трофических цепей, например, множество насекомых и микроорганизмов.