Геометрическая волновая инженерия псевдоповерхностей 2-го и 3-го порядков - страница 4
Геометрия входит в волновое описание через два ключевых механизма:
Граничные условия.
Типы и свойства границ структур – будь то идеальный проводник, диэлектрическая или импедансная поверхность, акустическая стенка или комбинации этих условий – определяют характер отражения, поглощения и дисперсии волны. На искривлённых псевдоповерхностях граничные условия действуют не только в локальном, но и в глобальном смысле: ориентация нормали, изменение кривизны на границе, переход между областями с различной метрикой могут существенно влиять на фазовые и амплитудные характеристики волны. Кроме того, граничные условия на искривлённых поверхностях могут вызывать образование замкнутых резонансных траекторий, аналогичных модам Фабри-Перо, но сформированных исключительно за счёт геометрических параметров.
Метрика пространства.
В случае объемных метаматериалов, а также в рамках трансформационной оптики и акустики, пространственная кривизна может быть описана в тензорной форме через пространственно-зависимые параметры – диэлектрическую проницаемость и магнитную проницаемость. Эти тензоры изменяют саму структуру волнового пространства, создавая искусственные метрики, эквивалентные искривлённому пространству из общей теории относительности. Таким образом, можно организовать "геометрическое преломление", при котором лучи распространяются не прямолинейно, а по геодезическим, определяемым распределением метрики. Такой подход особенно актуален для создания линз без рефракции (grin-оптика) и геометрических резонаторов.
Поведение волн в искривлённых геометриях определяется их взаимодействием с геодезическими траекториями (в рамках приближения геометрической оптики) и с выраженными волновыми эффектами, важность которых возрастает при уменьшении длины волны или увеличении кривизны поверхности.
Основные волновые эффекты включают:
– Дифракция.
Особенно существенна в областях, где размеры геометрических элементов поверхности – неровности, выступы, изгибы – соизмеримы с длиной волны L. В условиях резких перепадов кривизны возникают дифракционные каустики, разделённые области усиления и ослабления поля, а также длинно живущие боковые лепестки излучения. Дифракция на геометрических неоднородностях может быть аналогом Bragg-рассеяния на фотонных кристаллах, но без периодичности – только за счёт формы.
– Интерференция.
На псевдоповерхностях с замкнутыми геодезическими или повторяющимися траекториями возникают стоячие волны, интерференционные узлы и геометрически обусловленные собственные моды поля. Даже при однородной плотности материала наблюдаются пространственно неоднородные модовые распределения из-за метрики. Спектральные свойства таких резонаторов – резонансные частоты, добротность, модовая плотность – определяются в первую очередь кривизной и глобальной формой поверхности.
– Фокусировка и каустики.
В случае систем с градиентной или переменно распределённой кривизной, волновые фронты начинают «само фокусироваться» в определённых геометрических узлах, формируя каустические области – линии или пятна локального усиления поля. Эти геометрически индуцированные фокусы отличаются от традиционных линзовых тем, что могут иметь распределённую природу: например, окружности фокализации, фокус-линии или эллипсоидальные области, зависящие от начальных условий возбуждения и характера метрики.
– Модовая эргодичность. На поверхности с K < 0 волна, распространяясь, может покрывать всю доступную поверхность множеством петель через сложные, квазихаотические траектории. Это может приводить к образованию устойчивых собственных волновых состояний, равномерно распределённых по всей геометрии, с уникальными свойствами устойчивости и нечувствительности к локальным дефектам. Подобные «эргодические моды» особенно интересны для задач акустической и фотонной локализации, а также квантово-оптической когерентной фильтрации.