Глобальное потепление или глобальное похолодание? - страница 6
1.4. Влияние термохалинной циркуляции на климат Земли
Понижение глобальной температуры ведет к понижению стерического (плотностного) уровня Мирового океана, который определяется разностью в плотности океанических вод, которая зависит от разности их температуры и солености.
Термохалинная циркуляция (ТЦ) представляет собой крупно масштабную океаническую циркуляцию или конвейер, в котором происходит движение водных масс за счет перепада плотности воды, образовавшегося вследствие неоднородности распределения температуры и солёности в океане. В самом наименовании термина заложены два фактора, которые вместе определяют плотность морской воды – температура (термо) и солёность (халина). ТЦ является глобальным объединением всех существующих течений Мирового океана. Рассмотрим некоторые из них. Стоит обратить внимание на то, что вариации солнечной активности через атмосферную и гидросферную циркуляцию определяют изменение размеров ледового покрытия в полярных областях Арктики (Северный полюс) и Антарктики (Южный полюс). Именно количество атмосферных осадков и температурный режим атмосферы регулируют объемы накопления и таяния ледниковых щитов.
Идея солнечного влияния на льдообразование в полярных областях была высказана в 1918 году немецким географом, профессором Людвигом Меккингом. Он утверждал, что количество льда в морях варьирует, и что это вызвано вариациями солнечной активности – периоды максимальной солнечной активности способствуют уменьшению количества льда, а периоды минимальной – его увеличению.
Активное таяние льдов (что мы и наблюдаем в настоящее время) приводит к тому, что огромная масса пресной, холодной, плотной воды уносится Лабрадорским течением (ЛТ), которое также является холодным морским течением. Траектория течения – между побережьем Канады и Гренландией, устремленное в южном направлении из моря Баффина до Ньюфаундлендской банки. У Ньюфаундленда ЛТ смешивается с тёплым струйным течением Гольфстрим (Г), отклоняя его в сторону Европы. Холодные воды подныривают под Г, то есть происходит процесс опреснения и охлаждения стоковым течением. Когда степень опреснения достигает определенного уровня, то плотность вод ЛТ уменьшается, оно поднимается на поверхность и преграждает дорогу Гольфстриму, который значительно влияет на климат Западной Европы. Так, например, в шотландском Глазго средняя температура в январе месяце составляет +3,5 градуса, а в находящейся на той же широте Москве –9,5. Все из-за того, что Глазго находится ближе к “батарее” Гольфстрима. Схема течения Гольфстрима приведена на рис. 1.6.
Гольфстрим представляет собой систему течений, простирающаяся от полуострова Флорида до Скандинавии, Шпицбергена, Баренцева моря и Северного Ледовитого океана. Ширина потока составляет 70–90 км на юге, увеличивается до 100–120 км на широте пролива Хаттерас и охватывает океанские воды до глубины 0,7–0,8 км. Ежегодная тепловая мощность Гольфстрима оценивается 1,4·10>15 Дж. Температура на поверхности потока достигает +25°С в Мексиканском заливе, а его скорость – 6–10 км/ч и уменьшается до 3–4 км/ч у Ньюфаундлендской банки.
Рис.1.6. Схема течения Гольфстрима
Теплые воды Гольфстрима обогревают нижние слои атмосферы над океаном, а западные ветры переносят это тепло в Европу. Благодаря Гольфстриму климат Европы на 11-20°С теплее своих климатических норм, а также норм других регионов планеты, расположенных на этой же широте.