Горизонты будущего - страница 33



Если конечная масса звезды слишком велика, то звезда становится чёрной дырой. Гравитационное поле столь массивной звезды так сильно сдавливает её вещество, что она не может остановиться на стадии нейтронной звезды и продолжает сжиматься вплоть до гравитационного радиуса. Предполагают, что количество чёрных дыр в нашей Галактике около десяти миллионов.



Рис. 17. Основные этапы развития Вселенной. Развёртка Вселенной.


Особый научный интерес представляет сверхновая звезда, или вспышка сверхновой, – феномен, в ходе которого звезда резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки. Этот феномен является результатом катаклизма, возникающего при взрыве поверхности звёзд и сопровождающегося выделением огромной энергии. Как правило, сверхновые звёзды наблюдаются, когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев подобных вспышек.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство. Из оставшейся части образуется компактный объект – нейтронная звезда, если масса её до взрыва составляла более 8 солнечных масс (M☉), либо чёрная дыра при массе звезды свыше 20 M☉. При массах звёзд менее 5 M☉ происходит критическое накопление нового вещества, вызывающего взрыв поверхности и их обновление. Тогда они образуют остаток сверхновой. Выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционируют.

Разновидности остатка следующие:

1. Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра.

2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе.

3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.

4. Вторичная волна, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Условия космического пространства, в которых происходит эволюция уединённых волн, характерны разрежённостью газов, близкой по свойствам к вакууму с низкой температурой. В этих условиях осуществлялась кристаллизация выброшенного вещества и его квантование. При этом плотность вещества в центральной части уединённой волны быстро возрастала, а низкая температура её ещё более увеличивала, приводя к быстрой конденсации вещества. Эти волны, подвергшись охлаждению в космических просторах, превращались сначала в жидкостные вещества, а затем замораживались в ледяные массы и минералы. Таким образом, они превратились в малые космические тела.

После каждого взрыва на Солнце возникала планетарная туманность. Она была правильной округлой формы. Мы полагаем, что планеты Солнечной системы образовались в результате трёх последовательных грандиозных обновлений Солнца. В центре планетарной туманности находилось очень горячее обновлённое Солнце. Планетарная туманность со временем была закономерно квантована в планеты (Рис. 16).

Глава 5. Вселенские часы

Слово время происходит от слова вартман, которое на одном из древнейших языков, санскрите, означало «путь». В старину говорили: «До города два дня пути». Да и сейчас мы нередко слышим: «Это совсем близко – минут пять ходу, не больше!». Астрономы световыми годами измеряют расстояния между звёздами и галактиками. Пространство и время неразрывно связаны между собой. В самом деле, всё в мире происходит не только где-то, но и когда-то, всё в мире имеет свой адрес не только в пространстве, но и во времени. Прекрасная роза, что расцвела вчера, сегодня поблекла, а завтра увянет. Она осталась на прежнем месте, но исчезает её нежный аромат и осыпаются лепестки – это уже не та, не вчерашняя роза. Всё в мире изменяется. И часто необходимо предвидеть, когда наступит какое-нибудь событие и сколько оно продлится – когда начнётся и когда закончится.