Хаос. Создание новой науки - страница 13



. Уравнения движения, определяющие изменение температуры кофе в чашке, должны отражать будущее состояние этой гидродинамической системы. Они должны учитывать эффект рассеивания, при котором температура жидкости стремится к комнатной, а скорость перемещения ее частиц – к нулю.

Отталкиваясь от совокупности уравнений, описывающих конвекцию, Лоренц будто разобрал их на части, выбросив все, что могло показаться несущественным, и таким образом значительно упростил систему[41]. От первоначальной модели не осталось почти ничего, кроме факта нелинейности. В результате уравнения, с точки зрения физика, приобрели довольно простой вид. Взглянув на них – а это делал не один ученый на протяжении многих лет, – можно было с уверенностью сказать: «Я смог бы их решить».

Лоренц придерживался иного мнения: «Многие, увидев такие уравнения и заметив в них нелинейные элементы, приходят к выводу, что при решении эти элементы несложно обойти. Но это заблуждение».

Простейший пример конвекции можно наблюдать в жидкости, наполняющей сосуд с ровным дном, которое можно нагревать, и с гладкой поверхностью, которую можно охлаждать. Разница температур между горячим дном и прохладной поверхностью порождает потоки жидкости. Если разница небольшая, жидкость остается неподвижной; теплота перемещается к поверхности благодаря теплопроводности, как в металлическом бруске, не преодолевая естественного стремления жидкости находиться в покое. К тому же такая система устойчива: случайные движения в ней, происходящие, например, когда лаборант нечаянно заденет сосуд, обычно скоро затухают и жидкость возвращается в состояние покоя.

Но стоит увеличить температуру, как поведение системы меняется. По мере нагревания жидкость расширяется снизу, становится менее плотной, а значит, и чуть легче – достаточно, чтобы преодолеть трение; в результате вещество устремляется к поверхности. Если конструкция сосуда хорошо продумана, в нем появляется цилиндрический вал: горячая жидкость поднимается по одной из стенок, а охлажденная спускается по противоположной. Понаблюдав за сосудом, можно проследить непрерывный цикл таких перемещений. Вне лабораторных стен сама природа создает области конвекции. К примеру, когда солнце нагревает песчаную поверхность пустыни, перемещающиеся воздушные массы могут сформировать миражи высоко в облаках или вблизи земли.

С дальнейшим ростом температуры поведение жидкости еще больше усложняется: в завитках зарождаются колебания. Уравнения Лоренца были слишком примитивными для их моделирования, описывая лишь одну черту, характерную для конвекции в природе, – кругообразное перемещение нагретой жидкости. В уравнениях учитывалась как скорость такого перемещения, так и теплопередача, и оба физических процесса взаимодействовали друг с другом. Когда любой циркулирующий объем горячей жидкости поднимается кверху, разогретое вещество приходит в контакт с более холодной субстанцией и теряет теплоту. Однако если движение жидкости происходит достаточно быстро, она не потеряет всю избыточную тепловую энергию к тому моменту, как достигнет верха и начнет опускаться по другой стороне вала. Эта жидкость может начать подталкивать систему к вращению в противоположном направлении[42].


Движение жидкости (или газа). Когда жидкость нагревают снизу, в ней обычно образуются цилиндрические валы (слева). Горячая жидкость поднимается по одной стороне вала, отдает тепло и опускается по противоположной – наблюдается конвекция. Если жидкость нагревать сильнее