Имитационное моделирование - страница 4



Существует ряд подходов к выделению систем по сложности и масштабу. Например, для систем управления удобно пользоваться классификацией по числу (количеству) элементов:

• малые (10–10>3 элементов);

• сложные (10>4–10>7 элементов);

• ультрасложные (10>8–10>30 элементов);

• суперсистемы (10>30–10>200 элементов).

Большая система – это всегда совокупность материальных и энергетических ресурсов, средств получения, передачи и обработки информации, людей, которые принимают решение на разных уровнях иерархии. В настоящее время для понятий «сложная система» и «большая система» используют такие определения:

• cложная система – упорядоченное множество структурно взаимосвязанных и функционально взаимодействующих разнотипных систем, которые объединены структурно в целостный объект функционально разнородными взаимосвязями для достижения заданных целей в определенных условиях;

• большая система объединяет разнотипные сложные системы.

Тогда определение системы можно записать так: «система – это упорядоченное множество структурно взаимосвязанных и функционально взаимодействующих однотипных элементов любой природы, объединенных в целостный объект, состав и границы которого определяются целями системного исследования».

Характерные особенности больших систем:

• значительное количество элементов;

• взаимосвязь и взаимодействие между элементами;

• иерархичность структуры управления;

• наличие человека в контуре управления и необходимость принятия решений в условиях неопределенности.

Описание динамики системы или ее поведения составляет основу любой имитационной модели. В качестве исходных данных для решения этой задачи используются результаты, полученные на этапе разработки концептуальной модели системы. К ним относятся:

• определение принадлежности моделируемой системы одному из известных классов;

• описание рабочей нагрузки системы;

• выбор уровня детализации представления системы в модели и ее декомпозиция.

Все последующие действия исследователя по созданию модели могут быть отнесены к этапу ее формализации, который в общем случае предполагает:

• выбор метода отображения динамики системы (на основе событий, процессов или транзактов);

• формальное (математическое) описание случайных факторов, подлежащих учету в модели;

• выбор механизма изменения и масштаба модельного времени. Рассмотрим устоявшиеся понятия в имитационном моделировании: «процесс», «работа», «событие», «транзакт».

Работа (активность) это единичное действие системы по обработке (преобразованию) входных данных. В зависимости от природы моделируемой системы под входными данными могут пониматься информационные данные или какие-либо материальные ресурсы.

Под процессом понимают логически связанный набор работ. Некоторые процессы могут рассматриваться как работы в процессе более высокого уровня. Любой процесс характеризуется совокупностью статических и динамических характеристик.

К статическим характеристикам относятся:

• длительность;

• результат;

• потребляемые ресурсы;

• условия запуска (активизации);

• условия остановки (прерывания).

Статические характеристики процесса не изменяются в ходе его реализации, однако при необходимости любая из них может быть представлена в модели как случайная величина, распределенная по заданному закону.

Динамической характеристикой процесса является его состояние (активен или находится в состоянии ожидания).