Интеллект-стек 2023 - страница 7



. В теории active inference18 и теории world as a neural network19 говорится, что «достаточно сложная система может учиться, и это описывается вот такой физикой». Далее берём несколько сотен миллионов (то есть очень мало!) выращенных в пробирке нейронов мыши и/или человека (работает и так, и так) и кладём на электродную матрицу. Архитектура такого вычислителя – «синапсовое спагетти, уж как выросло, но должно быть достаточно сложное, чтобы мочь научиться чему-то заранее ему неизвестному» (то есть постулируем, что у сложнозапутанных между собой нейронов есть интеллект, этот интеллект должен избегать сюрпризов). Современные теории утверждают, что для познания мира не нужно знать, что такое «награда» (что такое «пища» или «здоровье» и т.д.). Но избегание неприятностей, «выживание в мире, полном опасностей» – оно появляется во всех устойчивых системах, которые вынуждены поддерживать собственное существование в условиях опасной неопределённости физического мира. Поэтому избегаем неопределённости, ибо в ней те самые «неприятные сюрпризы».

DishBrain («тарелковый мозг») погружаем в какой-то мир (в работе был использован мир игры Pong), подавая сигналы от симулятора этого игрового мира на матрицу электродов и распознавая сигналы от каких-то нейронов DishBrain. Если DishBrain попадает ракеткой по мячу в игре (не зная, что такое игра, ракетка, мяч, «попадание»), то ничего не делаем, работает «физика игры». Но если DishBrain промахивается, то подмешиваем шум к датчикам, то есть оставляем DishBrain в неизвестности о результатах действия, сигнал о состоянии мира тонет в шуме. «Достаточно сложная система» не делает ничего, она просто существует. Но если формулы active inference верны, такая система должна дрейфовать к стабильности в окружающей среде. Она, как и ожидается, каким-то чудом дрейфует: DishBrain научился играть в понг за пять минут (это очень, очень быстро! Попробуйте научить за это время играть в Pong кошку или собаку, или трёхлетнего ребёнка!). Всё, наказание (антинаграда) неопределённостью исчезло, мир вокруг себя несколько сот миллионов нейронов держат стабильным, известным. По большому счёту, этим занят любой интеллект.

Тем самым цивилизация уходит от расхожих в прошлом представлений о награде и наказаниях, доказательствах и опровержениях. Вместо этого используется другой набор представлений: нет наград и наказаний, а есть отсутствие неприятностей, при этом потенциальным источником неприятностей будет неопределённость, то самое «не дай бог тебе жить в эпоху перемен». Парадоксально, но если перемен нет прямо сейчас, то вы будете вынуждены активно искать возможные источники сюрпризов в ближайшем будущем, а потом и в более отдалённом будущем, всё более и более отдалённом по мере роста интеллекта и возможностей его предсказания и планирования действий. Интеллект обязательно будет исследовать мир, активный поиск источников возможных сюрпризов в будущем при кажущейся стабильности «прямо сейчас» заложен физикой, любопытство по факту «аппаратное свойство»!

Активный поиск (active/embodied inference, деятельное/телесное рассуждение) – это поисковое рассуждение с учётом использования тела. Не бывает интеллекта без какого-то его носителя, тела/body. Тело с его интеллектом (реализованным мозгом или не мозгом, мы тут не обсуждаем детали устройства) будет буквально подтаскивать глаза к углу и заглядывать за угол – вдруг там что-то опасное? Это если есть глаза, но если глаз нет, то тело будет хотя бы ощупывать окружающее пространство непрерывно двигающимися ресничками, как у одноклеточной инфузории туфельки. Этот вечный поиск неприятностей, которых надо бы избежать на многих и многих системных уровнях (клетки, органа, организма, популяции – и так далее вплоть до всей биосферы Земли, а по гипотезе Виталия Ванчурина, так и вплоть до больших участков Космоса со всеми тамошними галактиками) и попытки их избежать – это и есть «смысл жизни».