Искусственный интеллект. Большие данные. Преступность - страница 5



Известно, что в ряде стран мира были проведены успешные испытания процессоров для ИИ, созданных на алмазной основе, процессоров с так называемой «алмазной подложкой». Наконец, в 2017 г. команда Стэнфордского университета, университета г. Сеул, компании «Сименс» и Израильского технологического университета смогли создать работающий в реальном режиме биологический компьютер, где в качестве процессора используются молекулы. Т. е. будущее ИИ связано не столько с программами, сколько с прогрессом в области аппаратной части и новыми типами процессоров.

Во-вторых, полный цикл обработки информации в настоящее время осуществляется преимущественно на базе комбинаторных методов, глубокого обучения и нейронных сетей. Однако все три метода страдают тем недостатком, что успешно могут работать только с конечными задачами. Наиболее яркий пример конечной задачи – это любая игра, где наперед задано все количество возможных ситуаций и комбинаций, возникающих в ходе игры. Но следует считать, что комбинация нейронных сетей с машинным обучением в ближайшие годы будет господствующей в вычислительной технологии ИИ.

Наконец, в-третьих, тенденцией взаимодействия человек-машина в рамках ИИ является повышение уровня автономии ИИ, т. е. возложение на него частично или в полном объеме принятия решений. Это особенно ярко проявляется в военной и финансовой сфере, где счет идет на миллисекунды и соответственно вычислительная реакция превосходит человеческую.

Как уже отмечалось, в настоящее время ИИ используется, прежде всего, для распознавания образов, прогнозирования и управления сложными системами. Однако в принципе ИИ может быть ориентирован на любые задачи, которые в настоящее время решают люди. При этом необходимо оговориться, что ИИ способен подменить людей в настоящее время только в рамках имитационных, функциональных и операционных задач. Это означает, что ИИ применяется лишь тогда, когда извне ему ставится четкая задача, которая может быть выполнена в рамках наперед заданной последовательности шагов или операций. При этом сама задача носит имитационный, т. е. воспроизводимый с образца характер. Творческие задачи с созданием нового ИИ, по крайней мере на сегодняшний момент, решать не готов.

В начале XXI века за счет мощных программно-аппаратных комплексов ИИ стал распознавать изображения с 98 % точностью и делает он это лучше, чем человек, который распознает изображения с точностью до 95 %. Кроме того, впервые системы ИИ научились создавать синтетические изображения, которые практически неотличимы от оригинальных фотографий. Появилась возможность создания несуществующих личностей, которые, по крайней мере, в информационном пространстве могут жить полноценной жизнью, осуществляя с помощью чат-ботов коммуникации с людьми, информируя о своей жизни через ролики в YouTube и т. п. Согласно проведенным экспериментам, люди распознают ошибку, т. е. определяют искусственный характер изображения лишь в 3 % случаев из 100 %.

Системы ИИ добились впечатляющих результатов в конечных конкурентных играх: от шахмат до игры в го. В 2017 г. ИИ впервые победил человека в игре, где наряду с комбинаторикой требовалась рефлексия позиции, а именно – в покере. Методы ИИ в последние годы обеспечили прорыв в переводе. Другие направления задач, где осуществляется быстрый прогресс, включают в себя распознавание речи, автомобильную навигацию и прогнозирование биржевых процессов.