Искусственный интеллект в обработке и анализе медицинских МРТ-снимков с использованием OpenCV - страница 5




1. Медианный фильтр: Медианный фильтр является эффективным методом для удаления шума на основе сортировки пикселей в окне фильтра. Он заменяет каждый пиксель на медианное значение яркости пикселей в окне фильтра. Медианный фильтр хорошо справляется с удалением импульсного шума, такого как соль и перец, и сохраняет ребра и текстуры на изображении.


2. Фильтр Гаусса: Фильтр Гаусса использует гауссово распределение для размытия изображения и сглаживания шума. Он вычисляет новое значение пикселя как взвешенную сумму значений пикселей в окне фильтра, где веса определяются гауссовой функцией. Фильтр Гаусса обеспечивает гладкость изображения, но может оказывать менее выраженный эффект на сохранение ребер и текстур в сравнении с медианным фильтром.


3. Билатеральная фильтрация: Билатеральная фильтрация сочетает пространственное сглаживание и яркостную адаптацию, чтобы устранить шум, сохраняя при этом ребра и текстуры. Она учитывает как геометрическое сходство, так и яркостную сходство пикселей в окне фильтра. Билатеральная фильтрация обеспечивает хороший баланс между удалением шума и сохранением деталей на изображении, но может быть вычислительно более сложной по сравнению с другими методами.





Какой метод фильтрации шума наиболее эффективен для удаления аддитивного гауссовского шума?

Если вам понравилась книга, поддержите автора, купив полную версию по ссылке ниже.

Продолжить чтение