Использование биоразлагаемых материалов - страница 7
ГЛАВА 3. МЕХАНИЗМ РАЗРУШЕНИЯ БИОПОЛИМЕРОВ
В литературе встречаются такие понятия, как «биоразложение» и «биораспад». В общем, это взаимозаменяемые термины, но все-таки согласно литературе под «биоразложеним» понимают сумму микробных процессов, в результате которых происходит минерализация органических элементов, рис.7, а под «биораспадом» подразумевается потеря физических свойств (появляется ломкость, хрупкость), появление дезинтеграции полимерных пленок и т. д.
Рис. 7. Фото этапов полного биоразложения одноразового стакана из биопластика
Структура биоразлагаемых полимеров определяет их свойства. Несмотря на то, что существует бесчисленное множество биоразлагаемых полимеров, как синтетических, так и природных, между ними есть несколько общих черт. Биоразлагаемые полимеры можно разделить на две большие группы на основе их структуры и синтеза. Одна из этих групп – это агрополимеры или полимеры, полученные из биомассы. Другая состоит из биополиэфиров, которые получают из микроорганизмов или получают синтетическим путем из природных или синтетических мономеров. Агрополимеры включают полисахариды, такие как крахмалы, содержащиеся в картофеле или древесине, и белки , такие как сыворотка животного происхождения или глютен растительного происхождения. Несмотря на то, что биоразлагаемые полимеры имеют множество применений, у них есть общие свойства. Все биоразлагаемые полимеры должны быть стабильными и достаточно прочными для использования в их конкретном применении, но при утилизации они должны легко разрушаться. Еще одна общая черта этих полимеров – их гидрофильность. Гидрофобные полимеры и концевые группы будут препятствовать легкому взаимодействию фермента, если водорастворимый фермент не может легко войти в контакт с полимером. Другие свойства биоразлагаемых полимеров, которые обычно используются в медицине, включают: нетоксичный, способен поддерживать хорошую механическую целостность до разрушения, способен контролировать скорость разложения.
Деятельность в области создания биоразлагаемых материалов ведется по двум направлениям: – разработка полимерных материалов и вспомогательных веществ, которые под воздействием микроорганизмов быстро разлагаются и полностью минерализуются. При этом полимеры могут быть получены как из нефтехимического, так и возобновляемого сырья. Для оптимального протекания процесса биоразложения нужен определенный набор факторов окружающей среды: температура, давление, влажность в жидкой или газовой фазе, вид и концентрация солей, наличие или отсутствие кислорода (аэробное или анаэробное разложение), доступность альтернативных акцепторов электронов, наличие микроэлементов и питательных веществ, значение рН, окислительно-восстановительные потенциалы, стабильность или изменение условий окружающей среды, микроорганизмы-«противники», ингибиторы, альтернативные источники углерода, интенсивность и длина волны света. При этом необходимым условием является присутствие минимального содержания воды.
Биоразложение или биотическое разложение –это процесс, в результате которого полимерный материал разлагается под действием биотических компонентов (живых организмов). Микроорганизмы (бактерии, грибы, водоросли) используют полимеры как источник органических соединений (простые моносахариды, аминокислоты и т.д.) и источник энергии. Другими словами, биоразлагаемые полимеры представляют собой «пищу» для микроорганизмов. Под действием внутриклеточных и внеклеточных ферментов (эндо-и экзоэнзимов) полимер подвергается химическим реакциям. В результате этих реакций происходит расщепление полимерной цепочки, увеличивается число небольших по размеру молекул, которые, участвуя в метаболических клеточных процессах, распадаются на воду, диоксид углерода, биомассу и другие продукты биотического разложения и приводят к высвобождению энергии. Продукты разложения не являются токсическими и встречаются повсеместно в природе и в живых организмах. Таким образом, биотическое разложение превращает искусственные материалы, такие как пластики, в природные компоненты. Процесс, в результате которого органическое вещество, например полимер, превращается в неорганическое вещество (СО2), называется минерализацией. Основываясь на последних достижениях в понимании взаимосвязи между структурой полимера, его свойствами и природными процессами, были разработаны новые материалы, по своим свойствами не уступающие обычным пластикам, но являющиеся биоразлагаемыми. Установлено, что в основе процесса биоразложения лежат химические реакции, условно разделяющиеся на 2 группы: реакции, основывающиеся на окислении и реакции, основывающиеся на гидролизе. Эти реакции могут протекать одновременно, а могут и последовательно. Разложение полимеров, получаемых в результате реакции конденсации (полиэфиры, полиамиды и т.д.), происходит посредством гидролиза, в то время как полимеры, главная полимерная цепь которых составлена только из атомов углерода (например, поливиниловый спирт, лигнин), разлагаются в результате реакций окисления, за которыми могут следовать реакции гидролиза продуктов окисления. На макроскопическом уровне разложение полимера обнаруживается по изменению и ухудшению основных свойств материала. Эти изменения в основном являются следствием уменьшения длины полимерных цепочек, которые и определяют свойства полимера и пластика. На процесс разрушения могут влиять как «неживые» факторы, абиотические (УФ-излучение, тепло, вода), так и «живые», биотические (ферменты, микроорганизмы). Разложение начинается с фрагментации, когда полимер, в результате воздействия биотических или абиотических факторов подвергается химическому расчленению, приводящему к механическому расщеплению полимера на фрагменты. На следующем этапе происходит минерализация продуктов расщепления микроорганизмами. Данный этап является обязательным и свидетельствует о биоразложении, так как фрагменты полимеров превращаются в конечные продукты под действием микроорганизмов. Существуют и другие случаи (например, оксоразлагаемые полимеры), когда материал подвергается быстрой фрагментации под действием тепла и УФ-излучения, но этап минерализации протекает очень медленно, так как инертные микрочастицы пластика являются малочувствительными к биоразложению. Микроорганизмы используют биоразлагаемые полимеры в качестве пищи.