История электрификации горной промышленности - страница 15
Рассмотрим динамику использования ВИЭ в мире на рубеже ХХ – ХХI вв.
Ветроэнергетика (ВЭС). Установленная мощность в мире: 1996 г. – 6172 МВт; 2000 г. – 17 824 МВт; 2006 г. – 36 000 МВт. Лидирующие страны в этом направлении: Германия (6025 МВт), США (2495 МВт), Дания (2364 МВт), Испания (2538 МВт), Индия (1214 МВт). Россия – 7,5 МВт.
Геотермальная энергетика (ГТЭС). Установленная мощность в мире: 1970 г. – 678 МВт; 2000 г. – 8000 МВт. Страны-лидеры: США (2228 МВт), Филиппины (1908 МВт), Италия (785 МВт), Индонезия (589 МВт). Россия – 23 МВт.
Солнечная энергетика (ГЛЭС). Установленная мощность в мире на 2000 г. – 260 МВт. Страны-лидеры: Япония (80 МВт), США (60 МВт), Германия (50 МВт). Россия – 0,5 МВт.
Энергия биомассы (БЭ). Использование энергии биомассы идет по нескольким направлениям: производство биогаза и биомассы на малых установках (Китай, Индия – 6 млн установок); на больших установках по переработке городских сточных вод (10 000 установок) и на комбинированных установках сбраживания городских и промышленных сточных вод (более 100 новейших установок); на мощных комбинированных установках (фабриках) по переработке отходов продукции сельского хозяйства, животноводства и пр. (в Дании находится 18 таких установок из 50 во всей Европе).
Биогаз используется в быту, в водонагревателях, паровых котлах, дизель-генераторах, производящих электроэнергию, и др.
Широкое распространение получили электростанции, на которых сжигаются твердые бытовые производственные отходы (ТБО) городов (США, Дания), а также электростанции, работающие на биогазе свалок (Италия, Франция).
Начинают внедряться электростанции, в топках которых сжигается древесина, отходы лесопереработки (страны Скандинавии) как при прямом сжигании этих отходов, так и через их газификацию с последующим сжиганием полученного газа.
2.5. Невозобновляемые источники энергии
К нетрадиционным невозобновляемым источникам энергии в первую очередь относят термоядерную энергетику и магнитогидродинамические генераторы.
Термоядерная энергетика. В процессе исследования ядерных реакций было обнаружено, что целесообразно не только делить атомное ядро урана или плутония, но также и соединять тяжелые атомы водорода (дейтерий, тритий). При этом образуется благородный газ – гелий. При слиянии (синтезе) тяжелых ядер водорода высвобождается громадная тепловая энергия, превышающая энергию деления атомного ядра в расчете на 1 кг атомов.
На рис. 2.16 показана схема основных технологических контуров термоядерного реактора, работающего на смеси дейтерия (D) и трития (Т).
Энергия термоядерных реакций, происходящих в плазме, выделяется в виде энергичных нейтронов (14,1 МэВ) и энергичных ионов гелия – альфа-частиц (3,5 МэВ), поглощается специальным устройством, окружающим плазму, – бланкетом, снимается теплоносителем первого контура охлаждения и используется для получения электроэнергии. Реактор требует снабжения дейтерием и литием. Тритий нарабатывается из лития в процессе работы реактора.
Магнитогидродинамические генераторы. Область науки, изучающая взаимодействие между магнитным полем и токопроводящими жидкостями и газами, называется магнитной гидродинамикой. Поэтому генераторы, работающие на плазменном проводнике, получили название магнитогидродинамических генераторов – МГД-генераторов (рис. 2.17).
Интерес к МГД-генераторам заключается в том, что с их помощью можно получать электроэнергию без движущихся машин. Газы нагреваются в камере сгорания