Концепции современного естествознания. Часть 2. Биология и геология - страница 2



Большое значение приобрели данные экспериментальной минералогии, после того как с помощью алмазных наковален удалось добиться получения давлений, отвечаемых предполагаемым, на различных глубинах в мантии, вплоть до ее границы с ядром.

Для изучения максимальных глубин океана стали использоваться обитаемые глубоководные аппараты. В 1960 швейцарец Ж. Пиккар и американец Д. Уолш в батискафе «Триест» достигли дна Марианского желоба – самого глубокого места Мирового океана (11022 м). С 1980— 90-х гг. подводные аппараты с человеком на борту широко используются для выполнения геологических, гидрологических и биологических наблюдений в глубинах океана.

Запуски межпланетных космических аппаратов к Меркурию, Марсу, Венере, а также к более отдаленным планетам позволили также углубить знания о строении и эволюции Земли на основе сравнительного изучения планет (сравнительная планетология). Полученные данные вместе со сведениями о структуре земной коры и глубинных недр планеты послужили основой для разработки моделей развития Земли.

Итак, естественная история Земли выявила особый предмет исследования для основных естественных наук – физики и химии, а применение современных физических и химических инструментов исследования в сочетании с построением физических моделей, породили геофизику (включившую в себя значительную часть геохимии), ставшую ведущей естественной наукой о Земле, использующую первичные идеальные объекты физики (главным образом гидродинамики вязких сред) и химии, что породило два связанных направления: теорию внутреннего строения планеты и теорию тектоники литосферных плит.

12.2. Гипотезы о происхождении Земли и внутреннем источнике ее тепловой энергии1

В соответствии с современными представлениями Земля сформировалась в результате аккреции (процесса падения различных фрагментов вещества в направлении центра тяжести образующейся планеты, ср. п. 6.3 Части 1) газово-пылевых частиц протопланетного облака (модель «холодного» происхождения Земли, первый вариант которой принадлежит Лапласу). В результате этого постепенно увеличивалась её масса и росла сила тяготения, а следовательно, и скорости частиц и космических тел, падавших на формировавшуюся планету. Кинетическая энергия частиц и тел превращалась в тепло, и Земля всё сильнее разогревалась. Чем крупнее были падавшие тела, тем сильнее они нагревали Землю в эпоху великой бомбардировки (около 4 млрд. лет назад), когда Земля, как и Луна, подвергалась ударам довольно многочисленных и очень крупных (сотни километров в поперечнике) метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки – многочисленные кратеры и моря (области, заполненные излившейся магмой). На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стёрли следы этого. Энергия удара этих метеоритов освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела, т.е. эта энергия выделялась в слое толщиной порядка 1000 км. Этот механизм образовал первый гравитационный источник нагревания Земли.

Энергия, выделявшаяся в ударных процессах в период аккреции планет, была, вероятно, достаточна для частичного проплавления планеты. Поскольку температура плавления железа и его сплавов ниже, чем силикатов, тяжелый расплавленный металл мог отделяться от окружающего материала и опускаться к центру планеты, формируя ядро. При этом потенциальная гравитационная энергия преобразовывалась в тепловую