Квантовые вычисления со времен Демокрита - страница 6



В главе 12 рассматривается то, что я считаю главной концептуальной проблемой квантовой механики: не то, что будущее неопределенно (а кому до этого есть дело?), но то, что прошлое также неопределенно! Я разбираю две очень разные реакции на эта проблему: во-первых, популярное среди физиков обращение к декогеренции и «эффективной стреле времени» на базе Второго начала термодинамики; и во-вторых, «теории со скрытыми параметрами», такие как теория волны-пилота (она же теория де Бройля – Бома). Я считаю, что теории со скрытыми параметрами, даже если они будут отвергнуты, ставят перед нами необычайно интересные математические вопросы.

В оставшейся части книги рассматривается приложение всего изложенного выше к тем или иным серьезным, захватывающим или противоречивым вопросам математики, информатики, философии и физики. В этих главах значительно больше, чем в начальных, уделено внимание недавним исследованиям, в основном в области квантовой информации и вычислительной сложности, но также в области квантовой гравитации и космологии; мне представляется, что появляется некоторая надежда пролить свет на эти «коренные вопросы». Поэтому мне кажется, что именно последние главы устареют первыми! Несмотря на кое-какие не слишком существенные логические завязки, в первом приближении можно сказать, что эти последние главы можно читать в любом порядке.

• В главе 13 говорится о новых концепциях математического доказательства (включая вероятностное доказательство и доказательство с нулевым разглашением), а затем рассказывается о приложении этих новых понятий к пониманию вычислительной сложности теорий со скрытыми параметрами.

• В главе 14 поднимается вопрос о «размере» квантовых состояний: действительно ли в них зашифровано экспоненциальное количество классической информации? Кроме того, этот вопрос соотносится, с одной стороны, с дебатами о квантовой интерпретации, а с другой – с недавними исследованиями квантовых доказательств и совета на базе теории сложности.

• В главе 15 разбираются аргументы скептиков квантовых вычислений – тех, кто считает, что создать реальный квантовый компьютер не просто сложно (с чем согласны решительно все!), но невозможно по некоторым фундаментальным причинам.

• В главе 16 разбирается юмова проблема индукции; она используется как трамплин для обсуждения теории вычислительного обучения, а также недавних работ по изучаемости квантовых состояний.

• В главе 17 рассказывается о некоторых прорывных открытиях, меняющих наши представления о классических и квантовых интерактивных системах доказательства (к примеру, о теоремах IP = PSPACE и QIP = PSPACE); в основном эти открытия интересуют нас постольку, поскольку ведут к нерелятивизирующим нижним оценкам сложности схемы и, следовательно, могли бы осветить некоторые аспекты вопроса о равенстве P и NP.

• В главе 18 разбираются знаменитый антропный принцип и «аргумент Судного дня»; дискуссия начинается как сугубо философическая (разумеется), но постепенно сводится к обсуждению квантовых вычислений с постселекцией и теоремы PostBQP = PP.

• В главе 19 обсуждаются парадокс Ньюкома и свобода воли, что выливается в рассказ о «теореме о свободе воли» Конуэя – Кохена и использовании неравенства Белла для генерации «случайных чисел по Эйнштейну».

• глава 20 посвящена путешествиям во времени: разговор уже традиционно начинается с широкой философской дискуссии, а заканчивается доказательством того, что классические