Магия чисел. Математическая мысль от Пифагора до наших дней - страница 16



«Дедуктивные рассуждения» можно заменить в данной работе более коротким, но не менее емким термином – «доказательство». Достаточно двух деталей. Доказательство в математике происходит от четко выраженных допущений, ясно обоснованных. Допущения могут в разное время именоваться постулатами и чуть реже аксиомами. В античные времена преобладала уверенность, что постулаты математики являются очевидными истинами, присущими «природе вещей», не требующими доказательств и являющимися непреложными для любой последовательной (не противоречащей самой себе) оценки «чисел» и «пространства». Эта вера в жизненную необходимость постулатов, скажем в элементарной геометрии и арифметике, просуществовала до XIX века. Затем мало-помалу приходило осознание, что постулаты, ставшие основой математики, вовсе не обязательные истины в описанном смысле, но некое договорное условие, на которое согласны все математики. В частности, постулаты геометрии явно человеческого происхождения. Они не были навязаны человечеству «природой вещей» или каким-либо еще экстрачеловеческим посредничеством. Этот очень неадекватный итог диспута длиной в два тысячелетия вполне достаточен на данный момент, позднее он будет досконально рассмотрен.

Вторая деталь, которую следует постоянно учитывать, касается процесса, посредством которого математические выводы появляются на базе постулатов. Он и именуется дедукцией. Постулаты принимаются на веру без дальнейших доказательств. Любое утверждение, подразумеваемое постулатами, считается справедливым просто по определению. В задачи математики входит поиск утверждений, вытекающих из постулатов.

Здесь вполне уместно отметить, что пользоваться можно только системой умозаключений, согласованной между математиками. Эта система именуется формальной логикой. Со времени своего появления в Древней Греции и до настоящего времени она получила широкое распространение, классическая же логика Аристотеля является лишь разделом формальной или математической логики, традиционно используемой. Подобно постулатам, на которые она опирается, логика стала предметом всеобщего соглашения между математиками. Она не была навязана им судьбой или непреложной необходимостью. Данный вопрос также нуждается в дополнительном освещении, но не в данный момент.

Мы не затрагиваем вопрос, по какой причине математики отдают предпочтение той или иной системе постулатов в различных случаях, что легко себе представить, или почему они используют один метод рассуждений вместо другого. Так уж исторически сложилось, что геометры из глубочайшей древности перешли к определенным продуктивным методам размышлений, подсказанным им их практическим опытом. Прежде чем они осознали, что делают, они уже размышляли дедуктивно. Их умозаключения всегда оказывались последовательными.

Исходя из этого отдельные философы-математики вывели наивеличайшее и нисколько не логичное утверждение: логика есть необходимость, неминуемая судьба, навязанная человеческому разуму из ниоткуда. Логика не была изобретением человека, а только лишенным временной привязки даром человечеству от бессмертных богов. В той или иной форме эта вера просуществовала ни много ни мало более двух тысяч лет. Сомнения в ее полезности появились только совсем недавно.

Дальнейшие взаимозачеты могут слишком усилить претензии одной школы философии по указанным базовым вопросам за счет ее конкурентов. Действительно ли Фалес (или любой другой человек) изобрел дедуктивный метод, или он просто наткнулся на него? Такой же вопрос мы поднимали в отношении чисел: кто-то изобрел числа или их просто нашли? Нет необходимости повторять дедуктивные рассуждения, которые уже прозвучали о числах. Каждый вправе выбрать ответ, который ему по нраву. Великие умы не приходили к согласию. Что касается нас, нам хватит и того, чтобы продолжить узнавать, как возникло это непримиримое разногласие во мнениях.