Математика, философия и йога - страница 8



то, что познаете посредством ощущений – осязания, зрения, слуха, давления, кинестетического напряжения? Нам известно только это. Возможно, вы гипостатируете нечто существующее во внешнем мире независимо от сознания в любом смысле этого слова, то есть нечто лишенное сознания? Если так, то как вы об этом узнали? Нам доступны только ощущения, ничего более.

Я еще не пользовался словом «материя». Я упомянул о двух функциях, органах или свойствах познания, а именно о чувственном восприятии и умозрительном постижении. Мы знакомы только с их деятельностью. Это нам известно, но разве эти способности могут принести сведения о чем-то таком, что пребывает вне любого сознания? Мы привыкли считать, что так оно и есть, но это беспечность мышления. Если вы прочтете буддийские сутры, то заметите, что они очень точно рассказывают об этом. Будда говорил… во всяком случае, утверждается, что он говорил так: «Качества – вот все, что у нас есть». Под «качествами» он понимал практические ощущения. Больше ничего нет. Говоря о некотором веществе, которое не воспринимается само по себе, но только обладает какими-то качествами, вы недостаточно точны. Этого вы не знаете. Такая привычка легкомысленна. Этот вопрос мог бы увести нас на очень зыбкую почву, и я намерен поговорить об этом позже, после определенной подготовки, так как здесь вы сталкиваетесь с проблемой, которая долгие годы занимала философов.

По правде говоря, хорошо осведомленный современный ученый никогда не делает метафизических допущений о природе материи. Я имею в виду по-настоящему разумного ученого, а не простого клерка от науки, решающего задачи. Я говорю о людях уровня Эйнштейна[25] или, скажем, Вэнивара Буша[26]. Они понимают, что имеют дело с неким набором определений, пригодным по большей части только для математических формулировок. Опираясь на свои эксперименты, они выдвигают определенные гипотезы, благодаря которым эти опыты складываются в целостную концепцию. Подобные гипотезы оказываются хорошими, если приводят к таким дальнейшим экспериментам или наблюдениям, которые согласуются с гипотетическими предсказаниями и тем самым их подкрепляют. Эти гипотезы терпят крах, если не подтверждаются на практике. Один мой знакомый, физик-теоретик, высказал нечто очевидное для каждого математика: любое явление допускает потенциально бесконечное многообразие возможных объяснений. Я попробую вновь использовать математическую аналогию, чтобы прояснить эту мысль.


Рис. 5


Одним из простейших и прекраснейших примеров в истории науки может служить то, как Кеплер[27] выявил закон движения планет благодаря наблюдениям Тихо Браге[28], то есть определил, что орбиты обращающихся вокруг Солнца планет имеют почти эллиптическую форму.

В данном случае, если говорить о пространственных измерениях, он добился достаточно точного результата. Если вы знакомы с коническими сечениями (см. рис. 6) или уравнениями второй степени[29], решениями которых могут быть окружность, эллипс, парабола, гипербола или две пересекающиеся прямые, то вам известен и тот факт, что произвольные пять точек однозначно определяют одно из конических сечений.


Рис. 6


В данном случае наблюдения показали, что орбиты планет действительно являются эллипсами, хотя и очень близки к окружностям. Несмотря на это, пример послужит неплохой иллюстрацией.

Предположим, некое уравнение описывает выбранную вами гипотезу, постулированное толкование. Если вы наложите ограничение, требующее, чтобы решением была кривая второй степени, то пять точек будут определять ее однозначно. Но что позволяет вам накладывать такое ограничение на результаты наблюдений?