Методология 2025 - страница 38
В текущем подразделе мы приводим пример разговора про методы работы систем AI: что там делают подсистемы и подсистемы подсистем, обмениваясь данными, это dataflow представление. Центральное место в функциональном разбиении системы AI занимает искусственная нейронная сеть (ANN, artificial neural network), подсистема системы экспертов (несколько нейронных систем объединяются как «эксперты» в смеси экспертов, MoE, mixture of experts)49:
В суперупрощённом виде мы видим функциональную диаграмму: какая-то входная информация даётся на вход маршрутизатора, который выбирает пару экспертов из четырёх возможных, а затем ответы этих экспертов как-то замешиваются в выходную информацию. Вот эти «эксперты» обычно – искусственные нейронные, ANN, artificial neural network сети с классической декомпозицией на «слои» из вычислительных «нейронов»50. Вот типичная функциональная диаграмма для ANN (традиция называет такие диаграммы «архитектурами», но в этой «архитектуре» ни слова не говорится о конструктивах, это в других предметных областях было бы «принципиальная схема»), на ней представлен трансформер/transformer51 как вид ANN, отвечающий подобного сорта функциональной диаграмме, эта «принципиальная схема» была предложена в 2017 году:
Стрелки тут обозначают движение потоков данных (dataflow), а блоки – обработчики данных (функциональные объекты, выполняющие обработки каждый по своим методам). Обработчики данных представляют по факту как-то модифицированные «слои» из отдельных «нейронов», плотно перевязанных связями.
Обзором техноэволюции ANN занимается прикладной методолог систем AI Григорий Сапунов в канале «Gonzo-обзоры ML статей»52. Основное содержание его обзоров много лет было как раз посвящено модификациям принципиальных схем ANN. В Gonzo-обзорах первый раз слово «метод» встречается 25 февраля 2019 в обзоре работы «AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transformations rather than Data»53, там фраза «Дальше в работе рассматривают только параметрические преобразования. Это типа проще реализовывать, а также проще сравнивать с другими unsupervised методами». Онтологически из фразы следует, что «unsupervised learning»:: метод – это род методов, в котором есть множество видов методов. Обратите внимание, что методы – это поведение, а до этого в подразделе мы обсуждали вроде как функциональные разбиения ролей на подроли (систем на подсистемы, в функциональном рассмотрении – разбиение функциональных объектов, а не поведения). Вот эта связанность роли и метода должна как-то удерживаться, нельзя думать про одно без другого: не может «никто» делать что-то, и «кто-то» не может ничего не делать! Опять же, роль может работать по какой-то сигнатуре метода, а там внутри можно даже менять методы в их разложении для этой сигнатуры, а роль поможет удерживать внимание на результирующем методе, абстрагируясь от его разложения.
Если продолжить читать текст статьи, пытаясь найти там «методы», то придётся признать, что в статье они обсуждаются, но называются крайне разнообразно – и меньше всего словами, которые у нас в курсе даны как синонимы слова «метод». В статье «метод» обозначен то как «подход», то как «архитектура», и даже «efforts» как метонимия усилий команды, разработавшей метод, в фразах типа «Among the efforts on unsupervised learning methods, the most representative ones are Auto-Encoders and Generative Adversarial Nets (GANs)». Весь наш курс посвящён тому, что мы под всеми этими именами распознаем метод::тип – и с этого момента всё содержание нашего курса «Методология» приложимо к этим «подходам», «архитектурам» и даже «efforts». Заодно заметьте, что слово representative в текущей фразе не имеет отношения к representation learning, хотя казалось бы, могло бы и иметь. Со всем этим можно разобраться из контекста, как это и изучалось в курсе «Рациональная работа».