Мир по Эйнштейну. От теории относительности до теории струн - страница 7



. Еще более замечательным было то, что, используя электрические и магнитные измерения, Максвелл смог предсказать с помощью вычисления значение скорости распространения электромагнитных волн – примерно 300 000 км/с. Это убедило его в том, что свет есть не что иное, как частный пример электромагнитных волн{14},{15}. Максвелл выдвинул идею, что световые и электромагнитные волны распространяются в одной и той же «упругой среде». Эфир приобрел, таким образом, центральное значение в физике. Он стал невидимой материальной субстанцией, прозрачной и проницаемой (хотя и весьма упругой) для всех обычных тел. Эфир заполнял все пространство и оставался в покое. Он служил не только средой распространения света и электромагнитных волн, но и «средой обитания» всевозможных сил, действующих на обычную материю: гравитационных, электрических и магнитных. Например, магнитные силовые линии, проявленные с помощью железных опилок вокруг магнита, как предполагалось, свидетельствовали об определенной структуре эфира. В конце XIX в. значительная часть физиков придерживалась даже мнения, что обычное вещество представляет собой лишь концентрированный эфир и что, таким образом, «все являлось эфиром».

Для наших целей необходимо особо отметить, что эфир выступал (помимо прочего) в качестве альтернативной «почвы», пришедшей на смену стационарной земле докоперниковской цивилизации. «Заполняя» и «материализуя» абсолютное пространство Ньютона, он избавлял, в принципе, от дискомфорта, связанного с ненаблюдаемостью этого абстрактного пространства. Дискомфорта, отраженного в приведенной выше цитате Максвелла: «[…] море без волн и без звезд, без компаса и солнцa…» По всем этим причинам (научным и психологическим) все физики конца XIX в. были абсолютно убеждены в существовании и реальности эфира. В связи с этим забавно читать определение слова «эфир» во французской энциклопедии того времени Nouveau Larousse Illustr´e (изданной около 1903 г.), т. е. как раз перед эйнштейновской революцией:

«Эфир […] Эфиром называется невидимый элемент, неосязаемый и невесомый, распространенный повсюду, как в пустоте, так и внутри тел прозрачных и непрозрачных, существование которого, являвшееся долгое время гипотетическим, приобретает, по-видимому, в настоящее время черты научной достоверности…»

Как будто по иронии судьбы, этот пассаж, подчеркивающий «научную достоверность» существования эфира, был написан незадолго до того, как молодой «технический эксперт третьего класса» патентного бюро в Берне основал современную физику, заявив (среди прочего) о несуществовании эфира! Этот текст в любом случае дает возможность почувствовать значимость концепции эфира в начале ХХ в. и показывает интеллектуальную смелость молодого Эйнштейна, который был готов ниспровергнуть наиболее устойчивые догматы науки своего времени.

Бабочки в трюме корабля

Чтобы закончить экскурс в базовые представления, казавшиеся очевидными всем ученым во времена Эйнштейна, продемонстрируем понимание отношений между развитием физических процессов, рассматриваемых в «движущейся системе отсчета», и тех же процессов, но рассматриваемых в «системе покоя». Для конкретности вернемся к ситуации, описываемой Галилеем: судно с трюмом, внутри которого происходит целый ряд явлений, таких как движение бабочек. Берег играет здесь роль «системы покоя», в отличие от корабля (и его груза), представляющего «движущуюся систему отсчета». Итак, нас интересует связь между описанием «реального» движения бабочки, таким как оно воспринимается наблюдателем внутри трюма, и описанием движения той же бабочки наблюдателем на берегу. Зададим следующий простой вопрос: если корабль движется вдоль берега со скоростью, скажем, 1 м/с и если бабочка перемещается относительно трюма и по направлению к передней части корабля, т. е. параллельно берегу со скоростью 2 м/с, то с какой скоростью бабочка движется относительно берега? Все ученые начала XX в. ответили бы на этот вопрос следующим образом.