Мивары: 25 лет создания искусственного интеллекта - страница 6



· сбора данных;

· накопления и обработки информации;

· прогнозирования и имитационного моделирования.

Создание информационной модели сложной предметной области является творческой задачей с применением информационных технологий баз данных, экспертных систем, систем поддержки принятия решений, интеллектуальных систем и др. Успех решения задачи зависит от концептуального моделирования предметной области (выделяют концептуальный, логический и физический уровни моделирования ПО). Отметим, что анализ разработки существующих аналогов показывает необходимость изначального применения эволюционных (развивающихся, обучаемых) систем. В настоящее время существуют современные и перспективные методы моделирования самых сложных предметных областей в предельно жестких ограничениях и внешних условиях. К таким информационным технологиям относится отечественная технология создания самоорганизующихся программно-аппаратных комплексов оперативной диагностики (СПАКОД) на основе эволюционного многомерного информационного пространства универсального представления данных и правил [72, 46-126, 303, 354-355, 503-504].

При решении задач моделирования и прогнозирования сложных предметных областей невозможно изначально определить требуемые ресурсы и возможные проблемы. Такая задача относится к классу познавательных задач и не имеет однозначных, тем более, простых решений. Кроме того, задача мониторинга относится к классу диагностических задач, требующих обработки данных в реальном масштабе времени. Когда задачи познания и диагностики решаются одновременно, возникает наиболее сложный класс познающе-диагностических задач. В настоящее время для одновременного решения задач мониторинга и прогноза сложных реальных предметных областей не существует готовых информационных систем.

Однако, комбинируя существующие технические и программные решения, представляется возможным решить требуемую задачу мониторинга и прогноза сложных реальных предметных областей.

Например, технология самоорганизующихся программно-аппаратных комплексов оперативной диагностики позволяет постепенно по мере изучения (познания) предметной области эволюционно наращивать требуемые ресурсы как на программном, так и на аппаратном уровне.

Информационная модель создается с самого простого и минимального количества данных, а затем, по мере поступления новых данных из подсистемы сбора данных, происходит эволюционное наращивание информационной модели в подсистеме накопления и обработки данных. Далее появляется возможность выполнения прогнозирования на различные интервалы времени.

Технология СПАКОД позволяет одновременно осуществлять информационное моделирование на нескольких моделях, по каждой из которых выполняется прогнозирование. Полученные прогнозы по мере наступления событий сравниваются с реальным развитием предметной области.

Затем, в рамках организации обратной связи анализируются все прогнозы, их отличие от реального развития событий (ошибки прогнозирования) и осуществляется модернизация существующих информационных моделей. Со временем, практика показывает, что такое разномодельное эволюционное прогнозирование с обратной связью позволяет давать достаточно точные и объективные прогнозы.

Таким образом, технология СПАКОД позволяет эволюционно и постепенно наращивать как саму информационную модель (и требуемые для ее функционирования ресурсы), так и точность прогнозирования.