Модельное мышление. Как анализировать сложные явления с помощью математических моделей - страница 2



Все эти преимущества будут получены в результате использования множества различных моделей – не сотен, а нескольких десятков. Модели, о которых пойдет речь в книге, – хороший базовый набор. Они проистекают из разных дисциплин и включают дилемму заключенного, гонку по нисходящей и модель распространения инфекционных заболеваний SIR. Все эти модели имеют общую форму: они предполагают наличие множества объектов (чаще всего это люди или организации) и описывают взаимодействие между ними.

Представленные в книге модели можно разделить на три категории: упрощенные модели мира, математические аналогии и исследовательские, искусственные конструкции. Какой бы ни была форма, модель должна быть разрешимой, то есть достаточно простой, чтобы в ней можно было применять логику. Например, в книгу включена модель распространения инфекционных заболеваний, позволяющая на основе данных о трех группах людей – инфицированных, восприимчивых к болезни и излечившихся от нее – определять степень распространения болезни, а также вычислять пороговый уровень заражения (переломный момент, после которого болезнь начинает распространяться) и количество людей, которых необходимо вакцинировать, чтобы остановить распространение заболевания.

Однако какими бы действенными ни были отдельные модели, их комбинация позволяет добиться большего, поскольку исключает свойственную им ограниченность. Многомодельный подход проливает свет на белые пятна каждой модели, входящей в комбинацию. Политические решения, принятые на основе одиночных моделей, могут не учитывать важных особенностей окружающего мира, таких как неравенство в распределении доходов, многообразие идентичности и взаимосвязи с другими системами[3]. Использование набора моделей помогает выстраивать логическую интерпретацию множества процессов. Мы видим, как они перекрываются и взаимодействуют, создаем почву для осмысления той сложности, которая присуща нашей экономической, политической и социальной жизни. И делаем это, не поступаясь строгостью, – модельное мышление гарантирует логическую связность. Далее эту логику можно подкрепить фактическими данными, применив к ним модели для проверки, уточнения и совершенствования. В общем, когда наше мышление опирается на последовательную, эмпирически подтвержденную систему координат, это повышает вероятность принятия мудрых решений.

Модели в эпоху данных

Появление книги о моделях может показаться неуместным в эпоху больших данных, которые сегодня характеризуются беспрецедентной размерностью и степенью детализации. Данные о покупках клиентов, раньше поступавшие в виде ежемесячных совокупных показателей, распечатанных на бумаге, теперь представляют непрерывный поток геопространственных, временных и потребительских тегов. Данные об академической успеваемости студентов теперь включают баллы за каждое домашнее задание, работу, тест и экзамен, в отличие от итоговых оценок в конце семестра. В прошлом фермер мог упомянуть о засушливой почве на ежемесячном собрании ассоциации фермеров. Теперь тракторы передают мгновенные данные о состоянии почвы и уровне влажности в расчете на каждый квадратный метр. Инвестиционные компании отслеживают десятки показателей и тенденций по тысячам акций и используют инструменты обработки текстов на естественных языках для синтаксического анализа документов. Врачи могут страница за страницей получать данные из истории болезни пациентов, в том числе важные генетические маркеры.