Модельное мышление. Как анализировать сложные явления с помощью математических моделей - страница 21
Этот вывод решает одну давнюю проблему. На первый взгляд может показаться, что многомодельное мышление требует изучения большого количества моделей. Хотя нам действительно нужно освоить некоторые модели, их не так много, как вы думаете. Нам не придется изучать сто или даже пятьдесят моделей, поскольку они обладают важным свойством, известным как «один ко многим». Мы можем применять одну и ту же модель в разных ситуациях, введя новые переменные, параметры и изменив допущения. Это свойство в какой-то мере противоречит идее многомодельного мышления. Использование модели в новой области требует креативности, открытости разума и скептицизма. Мы должны признать, что не каждая модель подходит для решения любой задачи. Если модель не может объяснить, спрогнозировать или помочь нам рассуждать, ее нужно исключить из рассмотрения.
Навыки, необходимые для использования одной модели во многих областях, отличаются от математических и аналитических способностей, наличие которых многие считают обязательным условием для достижения успеха в моделировании. Процесс использования одной модели во многих областях подразумевает творческий подход. Прежде всего задайте себе вопрос: «Сколько областей применения я могу найти для модели случайного блуждания?» Чтобы вы могли составить представление о том, какие формы может принимать креативность, в конце главы мы используем геометрическую формулу площади и объема в качестве модели и применим ее для объяснения размера супертанкеров, критики индекса массы тела, прогноза масштабирования метаболизма и объяснения, почему так мало женщин-руководителей.
Множество моделей как независимых случаев лжи
Теперь обратимся к моделям, которые помогают раскрыть преимущества многомодельного мышления. И представим в их контексте две теоремы: теорему Кондорсе о жюри присяжных и теорему о прогнозе разнообразия. Теорема Кондорсе о жюри присяжных основана на модели, созданной для объяснения преимуществ принципа большинства. В соответствии с ней присяжные принимают бинарное решение о виновности или невиновности подсудимого. Каждый присяжный в основном выносит правильное решение. Чтобы применить эту теорему к совокупности моделей, а не членов жюри присяжных, мы интерпретируем принятие решения каждым присяжным как классификацию согласно той или иной модели. В качестве классов могут выступать действия (купить или продать) или прогнозы (победителем станет представитель демократической или республиканской партии). Далее теорема указывает на то, что конструирование множества моделей и применение принципа большинства обеспечит более высокий уровень точности, чем при использовании одной из моделей данного множества. Модель опирается на концепцию состояния мира – полное описание всей значимой информации. Для жюри присяжных состояние мира складывается из доказательств, представленных в суде. Для моделей, которые оценивают социальный вклад благотворительного проекта, оно может представлять команду проекта, организационную структуру, план проведения мероприятий и особенности проблемы или ситуации, которую должен решить проект.
Теорема Кондорсе о жюри присяжных
Каждый из нечетного количества людей (моделей) классифицирует неизвестное состояние мира как истинное или ложное. Каждый человек (модель) классифицирует правильно с вероятностью