Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок - страница 2





Для каждой ВЭУ можно выделить следующие три характерных значения рабочей скорости ветра:

Wminр, при которой 0≤w≤wminр и мощность ВЭУ равна нулю;

wNр, при которой wminр≤w≤wNр и мощность ВЭУ меняется в зависимости от скорости ветра и частоты вращения ротора;

wmaxр, при которой w>wmaxр и мощность ВЭУ равняется нулю за счет принудительного торможения ротора.

Для ориентировочных расчетов в диапазоне скоростей ветра от wminр до wNр полезная мощность ВЭУ для заданных скорости ветра w на высоте башни Hб(м) и диаметре ротора ВЭУ w (м) рассчитывается по формуле:



где S = πD2/4; ηр— КПД ротора (около 0,9); ηг— КПД электрогенератора (около 0,95); Ср – коэффициент мощности, обычно принимаемый равным 0,45 в практических расчетах; ρ = 1,226 кг/м>3

После подстановки всех указанных значений в формуле получаем для ориентировочных расчетов:




Для малых ВЭУ wminр находится обычно в пределах 2,5–4 м/с, а wNр – от 8 до 10 м/с. Для крупных ВЭУ указанные значения составляют 4–5 и 12–15 м/с.

Для реальных современных ВЭУ Ср лежит в диапазоне 0,38…0,48. Для получения электрической мощности ВЭУ вышеприведённое выражение необходимо ещё умножить на произведение механических (редуктор, подшипники и т п.) и электрических (генератор, трансформатор и т. п.) КПД элементов силового тракта ВЭУ. Обычно для современных ВЭУ суммарный КПД элементов можно принимать в диапазоне 0,90…0,93.

Для разработки конструкции ветроколеса (ВК), кроме параметра, – коэффициент использования мощности–Ср, используется еще один важный параметр – коэффициент быстроходности-λ.

Быстроходность ветроколеса представляет собой отношение линейной скорости конца лопасти к скорости набегающего потока и служит аэродинамической характеристикой ветроколеса. При оптимальной быстроходности лопасть ветроколеса не попадает в поток, турбулизированный предыдущей лопастью. Этот поток успевает покинуть область ветроколеса. В то же время воздух не проходит через сечение ветроколеса свободно, без взаимодействия с его лопастями. Типовые зависимости коэффициента использования энергии ветра Ср от быстроходности ВК λ для различных типов ВЭУ представлены на рис.2.

Быстроходность важна тем, что для получения электрического тока приемлемого качества (~50Гц) необходимо, что бы быстроходность ВК была как можно больше. Больше линейная скорость конца лопасти, т. е. больше частота вращения ВК, т. е. больше число оборотов генератора, т. е. ток, вырабатываемый этим генератором ближе к желаемым 50 Гц. На практике недостающие обороты, помимо быстроходности «добирают» применением редукторов (коробки передач, повышающей число оборотов на валу генератора), применения многополюсных генераторов, использованием электрических схем повышающих частоту переменного тока и т. п.

Быстроходность остаётся одним из определяющих понятий для выбора типа ВЭУ. Оперируя этими двумя важными параметрами и глядя, на вышеприведённый график можно рассуждать о том, почему же в современной ветроэнергетике в подавляющем большинстве случаев применяют трёхлопастные горизонтальноосевые башенные ВЭУ, использующие подъёмную силу. ВК использующие подъёмную силу имеют больший коэффициент использования мощности, чем использующие силу сопротивления при достаточно большом коэффициенте быстроходности. Башенные – потому что позволяют использовать ветровой поток на высоте 100 м от земли, горизонтальноосевые по тем же причинам (наилучшее соотношение λ с Ср ). А вот с тремя лопастями вопрос остаётся открытым. Казалось бы, двухлопастные ВК имеют наилучшее соотношение λ с Ср , а применяются крайне редко. Точнее в «большой» ветроэнергетике вообще практически не применяются. Причин две: при слишком высоком λ может возникнуть такая ситуация, когда конец лопасти уйдёт в так называемый флаттерный режим при превышении скорости звука (~340 м/с); двухлопастные ВК подвержены сложным динамическим нагрузкам (биение) связанным с двухполюсностью (по числу лопастей) ВК. В то время как трёхлопастные ВК более равномерно распределяют нагрузки от лопастей на три полюса. С другой стороны, становится понятным, почему для получения механической энергии (момент на валу) при, например подъёме воды из используются многолопастные ВЭУ. При неплохом Ср он имеет крайне низкий λ, т. е. вращается крайне медленно, но, по закону сохранения момента количества движения с максимально возможным для ВЭУ усилием.