На пути к психологии практического мышления - страница 11



Нам представляется возможным построить достаточно общую схему анализа физической задачи, опираясь на психологический анализ процесса мышления учащихся при решении физических задач и обнаруженные особенности структуры физической задачи.

Ход анализа задачи в общем случае можно разбить на четыре этапа.

1. Чтение и общее понимание текста задачи. При первом чтении понимание смысла задачи еще не полное, оказываются осмысленными лишь некоторые, чаще основные элементы явления и ситуации. Внимание концентрируется на цифровых данных, на некоторых знакомых словах и словосочетаниях, которые легко преобразуются в термины. Нередко решающий стремится мысленно представить явление, ситуацию, помогает себе рисунком или чертежом. Вся эта и последующая деятельность направлена на выдвижение гипотезы модели, которой можно воспользоваться для решения задачи.

2. Выдвижение гипотезы модели объекта задачи на основе узнавания модели. Составляя задачу, автор имел в виду какую-то определенную модель, употребление которой и должно привести к решению задачи. При этом даже в самом сложном случае можно найти какие-то признаки, прямо или косвенно указывающие на эту модель.

Одним из таких признаков может быть само явление, описанное в задаче. Ведь именно его следует смоделировать. В тех случаях, когда ученики знают только один способ описания подобного явления, узнавание оказывается несложным. Если известно несколько таких способов, то необходимы дополнительные признаки, чтобы остановиться на чем-то одном. Особенно сложным оказывается случай, когда процесс в задаче не описывается и не называется. В подобной ситуации физическое явление, процесс нужно воссоздать, опираясь на сведения, содержащиеся в задаче, и на собственные знания. Здесь бывают необходимы и научные знания, и жизненный опыт, и богатое воображение.

Другим признаком, позволяющим опознать модель, бывает наличие всех или отдельных элементов модели в явной или неявной форме. В самом простом случае в тексте обнаруживаются все или большинство элементов модели, которые легко объединяются в систему (например, если Т=М или Т=М). В более сложных случаях удается заметить лишь несколько или один термин, соответствующий одной какой-то модели. Если термин может принадлежать нескольким разным моделям, значит, необходимы дополнительные признаки.

Менее надежно указывают модель слова, которыми обычно обозначают те или иные ее элементы. Это особенно относится к словам, не имеющим прямого отношения к модели, но часто встречающимся в задачах, которые решались с помощью данной модели. Так, слово «падает» обычно считают за признак свободного падения, в то время как падение может быть и равномерным движением, и равноускоренным (но не свободным).

Для выявления привычных обозначений отдельных терминов мы выписали из двух параграфов стабильного задачника варианты обозначения словами выражения «V>0=0». Вариант, когда слова (С) тождественны элементу (Э) модели (с≡э) встретился в 14 % случаев («начальная скорость равна нулю»). В большинстве случаев (61 %) полного тождества не было, но смысловое значение было близким элементу модели (с⊃э) «выехал», «с остановки», «отход» и т. д. В остальных случаях (25 %) термин заменяли длинные высказывания, которые лишь косвенно говорят об элементе модели (с/э): «Вагонетка в течение одной минуты катится под уклон». «По-видимому, до этого она стояла, значит, движение началось со скорости, равной нулю», – рассуждает решающий.