Необычные размышления о… - страница 10
В этом случае синусоида годового движения полностью отобразится на таком суммарном векторе. Причем, свое максимальное значение амплитуда синусоиды годового движения (30 км/сек) примет в тот момент, когда вектор скорости годового движения совместится с суммарным вектором и эти два вектора будут одинаково направлены. Минимальное значение амплитуда примет при разнонаправленности этих двух векторов. Имеет смысл запомнить даты на годовом календаре, когда значения амплитуд синусоиды годового движения принимают максимальное и минимальное значения. В дальнейших размышлениях это нам пригодится.
Если суммарный вектор лежит в плоскости экватора, а устройство для измерения скоростей находится на экваторе, то синусоида суточного движения полностью отобразится на таком суммарном векторе (максимальное значение амплитуды такой синусоиды будет – 0,5 км/сек). Если, например, такой суммарный вектор перпендикулярен плоскости экватора Земли, то синусоида суточного движения никак не отобразится на таком суммарном векторе.
Если такой суммарный вектор перпендикулярен плоскости эклиптики, то синусоида годового движения никак не отобразится на таком суммарном векторе. Скорее всего, что такой суммарный вектор с плоскостью эклиптики и плоскостью экватора образуют какие-то углы, значения которых мы не знаем, поскольку не знаем, каким образом плоскость солнечной системы ориентирована относительно плоскости галактики, и под каким углом вектор перемещения галактики ориентирован относительно плоскости галактики. То есть, мы не знаем, каким образом галактика перемещается в пространстве. Летит ли вперед ребром или куда-то падает плашмя.
Но, если мы в каком-либо месте поверхности Земли сумеем построить пространственный суммарный вектор скоростей суточного, годового и галактического перемещений, то это позволит нам определить взаимное расположение всех плоскостей. Например, плоскости экватора, плоскости годового вращения Земли, плоскости вращения Солнца вокруг центра галактики и плоскости вращения галактики вокруг некоего, общего для многих галактик, центра.
Имеет смысл рассмотреть величину методической погрешности на тот случай, когда можно пренебречь учетом линейной скорости при вращении Земли вокруг своей оси. Пусть, величина суммарного вектора, полученного при сложении векторов скоростей перемещения галактики, вращения Солнца вокруг центра галактики, вращения Земли вокруг Солнца, равен – 1000 км/сек. Будем считать, что такой суммарный вектор целиком лежит в плоскости экватора. Тогда, синусоида суточного движения Земли полностью отобразится на таком суммарном векторе. Амплитуда такой синусоиды равна – 0,5 км/сек. Если суточное движение проигнорировать (не учитывать), то получим методическую ошибку в расчетах углового положения в пространстве суммарного вектора всех перемещений, за исключением суточного:
А = (0.5 км/сек.)/1000 км/сек. = 0.0005 радиан = 1.7 угловых минут.
В ряде задач такой незначительной методической погрешностью можно пренебречь и не учитывать вращение Земли вокруг своей оси при определении местоположения движущегося объекта.
Вместе с тем, в информации о линейной скорости Земли при ее вращении вокруг собственной оси, содержится подсказка о широте, на которой находится движущийся объект. Поэтому, при решении навигационной задачи, целесообразнее произвести учет движения Земли вокруг своей оси. Нам осталось рассмотреть орбитальное движение спутников вокруг тяготеющей массы, например, Земли.