Нейронные сети. Эволюция - страница 4



, который часто называют как – скорость обучения.

Суть идеи: что каждый раз обновляя А, мы будем использовать лишь некоторую долю этого обновления. За счет чего, с каждым тренировочным примером, мы мелкими шагами будем двигаться в нужную нам сторону, и в конечном результате остановимся около воображаемой прямой по центру.

Давайте сделаем такой перерасчет:

∆А = L * (Е / X)

Выберем L=0,5 в качестве начального приближения. То есть, мы будем использовать поправку вдвое меньшей величины, чем без сглаживания.

Повторим все расчеты, используя начальное значение А=0,4. Первый тренировочный пример дает нам у = Ax = О,4 * 40 = 16. При x = 40 и коэффициенте А = 0,4, ошибка E = T – y = 21 – 16 = 5. Чтобы график прямой, не проходил через точку с нашими координатами, а проходил выше её, то принимаем целевое значение – T = 21.

Рассчитаем поправку: ∆А= L / х) = 0,5*(5 / 40) = 0,0625. Обновленное значение: А = A + ∆А = 0,4 + 0,0625= 0,4625.

Сглаженное уточнение: y = Ax = 0,4625 * 40 = 18,5.

Теперь перейдем к расчетам следующего тренировочного примера.

Используя обновлённое на первом прогоне значение А, для второго тренировочного примера у = Ax = О,4625 * 20 = 9,25.

Значение, у = 9,25 – всё так же далеки от значения y = 39, но мы все равно движемся в нужном направлении, но уже с меньшой скоростью.

При x = 20 и коэффициенте А = 0, 4625, ошибка E = Ty = 39 – 9,25 = 29,75. Так как мы хотим, чтобы график прямой, не проходил через точку с нашими координатами, а проходил ниже её, то принимаем целевое значение – T = 39. Рассчитаем поправку ∆А = L (Е / х) = 0,5*(29,75 / 20) = 0,74375. Обновлённое значение А = A + ∆А = 0,4625+ 0,74375 = 1,20625.

Сглаженное уточнение y = = Ax = 1,20625 * 20 = 24,125.

Теперь еще раз отобразим на координатной диаграмме, начальный, улучшенный и окончательный варианты разделительной линии:




Можно убедиться в том, что сглаживание обновлений приводит к более удовлетворительному расположению разделительной линии.

Если еще уменьшить скорость обучения L и повторить расчеты с первым и вторым обучающим примером, то в итоге наша разделительная линия окажется очень близко к воображаемой линии.

Применяя способ уменьшение величины обновлений с помощью коэффициента скорости обучения, ни один из пройденных тренировочных примеров, не будет доминировать в процессе обучения.

ГЛАВА 2

Изучаем Python

В этой главе мы будем создавать собственные нейронные сети. Сначала создадим модель работы искусственного нейрона, а затем научимся моделировать сеть из множества нейронов.

Создаем нейронную сеть на Python

При моделировании нейронных сетей, мы будем использовать язык программирования Python.

Почему Python? Он очень прост в освоении, кроме того, нейронные сети создают и обучают в основном на этом языке. Кроме того, Python очень популярный и распространённый язык программирования.

О Python, можно рассказывать долго и много, но мы будем изучать Python лишь в том объеме, который необходим для достижения нашей цели – изучить работу нейронных сетей.

Установка пакета Anaconda Python

Посетите сайт – http://www.continuum.io/downloads, на котором предлагаются различные варианты установки Anaconda Python. Я использую пакет Anaconda, для операционной системы Windows, вы можете выбрать другие варианты – OS X или Linux. Пакет Anaconda предоставляет удобное средство интерактивной разработки Jupyter Notebook, в котором необычайно удобно писать и проверять программный код. На момент написания книги, доступен пакет Anaconda 5.0.1, и Python 3.6 – который и рекомендую установить.