Нейротон. Занимательные истории о нервном импульсе - страница 35
Рисунок 14. Закон Боудича «Всё или ничего».
В 1922—1925 годах Эдгар Дуглас Эдриан воспользовавшись капиллярным электрометром и только что изобретённым ламповым усилителем Герберта Гассера смог записать электрический потенциал отдельных нервных волокон при физическом воздействии.
Случайное наблюдение, сделанное Эдрианом в процессе эксперимента в 1928 году, ещё раз доказало наличие электричества в нервных клетках. Эдриан рассказывал: – Я разместил электроды на зрительном нерве жабы в связи с некоторыми экспериментами с сетчаткой. В комнате было почти темно, и я был озадачен, услышав повторяющиеся шумы в громкоговорителе, подключённом к усилителю[1]. Шумы указывали на то, что имела место большая импульсная активность. Только когда я сравнил шумы с моими собственными
движениями по комнате, я понял, что нахожусь в поле зрения гла́за жабы, и что он сигнализирует о том, что я делаю [16].
Примечание. Ещё Дюбуа Реймон в 1849 г. Дюбуа Реймон соединив роговицу и дно только что удалённого гла́за лягушки с помощью неполяризующихся электродов с гальванометром обнаружил разность потенциалов в 4—10 мВ. Так-что заслуга Эдриана не в открытии электрического потенциала в глазу земноводного, а в обнаружении корреляции между интенсивностью воздействия и частотой следования импульсов.
Эдриан подтвердил, что нервы подчиняются принципу «все или ничего». Но он также обнаружил, что применительно к нервам закон «все ли ничего» имеет продолжение: амплитуда нервных импульсов действительно сохраняется одинаковой, но при этом – с ростом силы раздражения может формироваться серия нервных импульсов, и чем сильнее раздражитель, тем больше частота их следования. Вероятно, так обеспечивается градация интенсивности ощущений. «В связи с этим импульсация несёт гораздо большую информацию, чем просто сигнал о том, что возбуждение произошло», – писал Эдриан [16].
Кроме того, он обнаружил, что более сильный стимул активирует большее количество чувствительных волокон.
Тогда же сложилось и устойчивое представление о том, что сигналы возбуждений, приходящие на разные дендриты, суммируются в соме нервной клетки и в результате формируется исходящий сигнал в аксоне.
Рисунок 15. Примеры суммации нервных импульсов.
Однако, последние исследования нейробиологов из Израиля, опубликованные в 2018 году в научном издании Scientific Reports опровергают эту модель. Получены свидетельства того, что направление результирующего сигнала существенно может повлиять на реакцию нейрона. К примеру, слабый сигнал «слева» и примерно такой же «справа» нейрон не суммирует и не отзовётся выходным импульсом, но если сигнал с бо́льшей мощностью поступит с одной из сторон, то запустить реакцию нейрона может даже он один [17].
[1] В 1884 г. Н.Е.Введенский для изучения работы нервных центров применил телефонический метод регистрации, прослушивая в телефон активность продолговатого мозга
Электрическая активность кожи
Ещё Дюбуа-Реймон в своё время обратил внимание на электрические потенциалы кожи. Он измерил потенциал на изолированном участке коже лягушки и обнаружил, что её биопотенциалы по своему значению могут превосходить даже нервные и мышечные.
Целенаправленным изучением возникновения электрических потенциалов на поверхности кожи впервые в мире занялся российский электрофизиолог, ученик И.М.Сеченова – И.Р.Тарханов (Тархнишвили, Тархан-Моурави, 1846—1908