Нейтронные звезды. Как понять зомби из космоса - страница 6



Для Эйнштейна – служащего швейцарского патентного бюро, который занимался физикой в свободное время, – сила притяжения вообще силой не была. Он утверждал, что на самом деле это искривление пространства и времени, или пространства-времени, включающего в себя четыре связанные между собой размерности: три пространственные (вверх-вниз, вправо-влево, вперед-назад) плюс еще одна – время. Согласно общей теории относительности, опубликованной наиболее полно в 1916 году, то, что мы воспринимаем как силу тяготения, на самом деле есть следствие кривизны пространства-времени. Массивные объекты, такие как звезды и планеты, изгибают и скручивают его ткань, создавая горы и впадины, хребты и плоскогорья, заставляющие близлежащие объекты двигаться в пространстве-времени зигзагообразно, поднимаясь и опускаясь.

Хотя кажется, что Солнце, притягивая к себе Землю, заставляет нашу планету обращаться вокруг него, это просто означает, что движение Земли определяется искривлением пространства-времени вокруг гораздо более массивного Солнца.

Кроме того, Эйнштейн математически показал, что любая не идеально сферически симметричная ускоряющаяся масса искривляет пространство-время и служит источником гравитационных волн, распространяющихся по Вселенной со скоростью света. Гравитационные волны возникают, даже если просто помахать рукой, но в этом случае они слишком малы и их нельзя заметить. Чтобы деформация пространства-времени была измеримой, требуется невероятно большое количество энергии. Такое, как при катастрофических космических событиях, в которых принимают участие столь массивные объекты, как черные дыры и нейтронные звезды, обращающиеся друг относительно друга, а затем сталкивающиеся на скорости, равной одной трети скорости света. Согласно Эйнштейну, подобное столкновение приводит к возбуждению гравитационных волн большой энергии, которые, распространяясь, “омывают” планеты, звезды и все, что встретят на своем пути. Они несут с собой информацию об источнике, вызвавшем их появление, и, возможно, даже о природе гравитации. В своих более поздних работах Эйнштейн несколько раз возвращался к этой ряби на пространстве-времени, но десятки лет гравитационные волны существовали только теоретически>14.

В 1974 году астрономы Рассел Алан Халс и Джозеф Хотон Тейлор – младший из Массачусетского университета в Амхерсте косвенным образом доказали существование гравитационных волн. Они заметили, что в системе двух гравитационно связанных нейтронных звезд орбитальный период, то есть время, которое требуется звездам, чтобы совершить оборот вокруг общего центра масс, постепенно уменьшается. Два тела постепенно сближаются, двигаясь навстречу неизбежному столкновению, поскольку, по мысли Халса и Тейлора, система теряет энергию в форме гравитационных волн. Сейчас такую систему называют пульсаром Халса – Тейлора. В 1993 году эти ученые получили за свою работу Нобелевскую премию>15.

Однако прямым свидетельством существования гравитационных волн результаты Халса и Тейлора не были. Требовалось экспериментальное подтверждение, а для этого ученым необходимо было новое, необычайно точное оборудование. Результат: два работающих вместе детектора-близнеца LIGO – один в Хэнфорде, штат Вашингтон, другой в Ливингстоне, штат Луизиана. Каждый из детекторов использует интерференцию двух лучей лазера, что позволяет невероятно точно измерять расстояния. Обсерватория, которая эксплуатируется Массачусетским и Калифорнийским технологическими институтами, находится в ведении научного сообщества LIGO – группы, состоящей из тысячи ученых из университетов шестнадцати разных стран. В восьмидесятых годах об идее создания LIGO впервые заговорили Райнер Вайсс, Кип Торн и Барри Бэриш, но поскольку требовалось преодолеть бюрократические барьеры и добиться значительного финансирования, которое необходимо для реализации больших научных проектов, до начала строительства прошло еще десять лет. Наконец в 2002 году LIGO приступила к работе