Новые миры образования: Трансформация обучения в эпоху искусственного интеллекта - страница 2



В современной образовательной среде искусственный интеллект (ИИ) играет все более значимую роль в поддержке процесса обучения и подменяет собой живого тьютора. Одним из примеров и является ИИ-тьютор – комплексная система, основанная на нейросетях, предобученных на массиве корпоративных учебных материалов и дополнительном образовательном контенте.

ИИ-тьютор предназначен для взаимодействия с обучаемыми в режиме текстового или речевого общения, что позволяет ему предоставлять индивидуализированную поддержку и руководство процессом обучения. Основная цель ИИ-тьютора – помочь обучаемым не только освоить новые знания и запомнить новую информацию, но и выработать понимание того, как эти знания могут применяться в повседневной профессиональной деятельности.

Кроме того, ИИ-тьютор направлен на развитие не только профессиональных знаний и умений, но и критического мышления и навыков решения проблем. Это достигается путем организации обучающего диалога, в ходе которого ИИ-тьютор задает вопросы и получает ответы от обучаемых, что позволяет ему оценить их уровень понимания и предоставить соответствующую поддержку.

Наиболее простым и доступным методическим приемом для реализации обучающих диалогов с ИИ-тьютором могут быть специальные учебные вопросы для каждого уровня таксономии уровней знаний (по Б. Блуму).

Вопросы для уровня таксономии «оценка/оценить»:

● Что является наилучшим для …?

● В чем плюсы (минусы), побочные эффекты …?

● Как можно ранжировать важность (ценность, эффективность) …?

Вопросы для уровня таксономии «синтез/создавать»:

● Какую альтернативу вы предложите для …?

● Как вы составите план …?

● Как можно составить схему (модель) …?

Опираясь на подобные вопросы, обучающийся сможет:

● найти и получить информацию;

● обобщить ее;

● «примерить» информацию на актуальный для себя контекст;

● сравнить ее с другой;

● синтезировать информацию, сделав самостоятельные выводы.

Подобные вопросы могут объединяться в рационально организованные группы – учебные эвристики (эвристические топики). Последовательно отвечая на вопросы ИИ-тьютора, учащийся не только изучает новое, но и самостоятельно порождает новые для себя идеи и обобщения. В результате такого обучения умственная деятельность обучаемых перейдет на уровень знаний высшего порядка.

Но возникает резонный вопрос – откуда взяться знаниевым графам, необходимым для того, чтобы система не галлюцинировала? Ведь именно они отражают специфику образовательного материала, выстраивая «Строительные леса по Выготскому», то есть собирая необходимую последовательность терминов, тезисов и вопросов, необходимых для развития понимания и перехода к следующей теме.


QR-код: https://t.me/LXD_education/969


Мы создали систему-конвертер – ансамбль из семантических нейросетей, больших языковых моделей (Large Language Model, LLM) и алгоритмов на основе даталингвистики. Благодаря такому технологическому стеку создается основа для знаниевого графа, выделяемого из текста, а его отладкой и доведением уже занимаются методисты, и промт-инженеры, включающие знаниевый граф в основные руководящие директивы.

Итогом становится системный промт, добавляемый в основной рабочий пайплайн LLM. Благодаря человеко-машинному взаимодействию удается не только быстро преобразовывать тексты курсов в интерактивный формат взаимодействия учащегося с ИИ, но и практически полностью избегать галлюцинаций и «выдумок» с его стороны, сохраняя при этом гибкость, адаптивность и живость диалога в процессе взаимодействия LLM с учащимся.