О том, чего мы не можем знать. Путешествие к рубежам знаний - страница 38



. Хотя никакого столкновения планет не происходит, уравнения неизбежно предсказывают результаты, катастрофические для обитателей такой несчастливой планеты. Того, что происходит после этого момента, уравнения предсказать не могут.

Открытие Ся оспаривает мнение Лапласа о том, что уравнения Ньютона предполагают возможность познания будущего при наличии полного знания настоящего, на самом фундаментальном уровне, потому что даже уравнения Ньютона не могут предсказать, что случится с этой несчастной планетой после того, как она достигнет бесконечной скорости. Теория достигает в этом месте сингулярности, и никакие дальнейшие предсказания не имеют смысла. Как мы увидим на следующих «рубежах», соображения теории относительности ограничивают физическое осуществление такой сингулярности, так как несчастная планета в конце концов достигнет скорости света в вакууме, на которой, как было показано, теория Ньютона является лишь приближенным представлением реальности. И тем не менее этот пример показывает, что для познания будущего одних уравнений недостаточно.

Интересно послушать, что говорил Лаплас на смертном одре. Видя, как его собственная сингулярность приближается к нему, оставляя ему лишь ограниченное время, он тоже признал: «То, что мы знаем, невелико, а то, чего мы не знаем, огромно»[32]. ХХ век показал, что даже если мы узнаем многое, размеры того, чего мы не знаем, останутся огромными.

Оказывается, однако, что непознаваемо не только внешнее поведение планет и игральных костей. Более глубокое внутреннее исследование моей кости из казино порождает новые сомнения в существовании детерминистической Вселенной с часовым механизмом, в которую верил Лаплас. Когда ученые заглянули внутрь игральной кости, чтобы понять, из чего она состоит, они обнаружили, что знание положений и перемещений частиц, составляющих такую кость, невозможно даже теоретически. Как мы увидим на двух следующих «рубежах», даже поведение самих частиц, образующих мою красную игральную кость из Лас-Вегаса, может управляться игрой случая.

Рубеж второй: Виолончель

3

Всякий принимает пределы своего собственного поля зрения за пределы мира.

Артур Шопенгауэр

Когда я начинал учиться в средней школе, наш учитель музыки спросил, хочет ли кто-нибудь из класса научиться играть на музыкальном инструменте. Руки подняли мы трое. Учитель подвел нас к шкафу, чтобы показать, какие инструменты можно выбрать. В совершенно пустом шкафу лежали стопкой три трубы.

– Судя по всему, вы будете учиться играть на трубе.

Я не жалею о своем выборе (хотя никакого выбора и не было). Я отлично провел время, играя в городском оркестре и дурачась в группе медных духовых оркестра графства, пока мы отсчитывали такты паузы. Но все-таки я немножко завидовал струнным: казалось, что они играли все время и именно им доставались лучшие мелодии. Несколько лет назад меня спросили в интервью на радио, на каком новом музыкальном инструменте я хотел бы научиться играть, будь у меня такая возможность, и какое произведение я бы хотел сыграть на нем.

– На виолончели. Сюиты Баха.

Этот вопрос продолжал меня преследовать и после интервью: могу ли я научиться играть эти прекрасные сюиты для виолончели? Может быть, осваивать новый инструмент было уже слишком поздно, но мне нужно было это узнать. И я купил себе виолончель.

Сейчас, когда я пишу о попытках предсказать результат броска игральной кости, виолончель стоит у меня за спиной. Когда мне нужно отвлечься от анализа уравнений, которые управляют поведением красного кубика, лежащего у меня на столе, я начинаю мучить одну из джиг из первой сюиты для виолончели. Я чувствую, как Бах переворачивается в гробу, но мне это занятие нравится.