Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов - страница 3
При дегазации расплавов продувкой газами или обработкой летучими веществами вопросом первостепенной важности становится содержание примесей в используемых газах и веществах, главным образом влаги, азота, кислорода [1].
Кроме того, было показано [6], что при кристаллизации жаропрочных никелевых сплавов с повышенной концентрацией азота в отливках может образовываться значительная микропористость. Это приводит к снижению свойств сплава.
При исследовании закономерностей поведения азота при выплавке монокристаллического жаропрочного сплава ЖС30-ВИ была установлена [4] зависимость между содержанием в сплаве азота и формой выделяющихся при кристаллизации сплава нитридов и карбонитридов: при повышенном содержании азота – выше 0,001 % (фактически 0,0014–0,0027 %) – образуются довольно крупные карбиды округлой или полиэдрической формы, а при низком содержании азота (0,0005–0,0007 %) формируются тонкодисперсные игольчатые вытянутые карбиды.
В монокристаллах сплава ЖС30-ВИ в пределах рассмотренного содержания азота имеется прямая зависимость: чем меньше содержание азота, тем больше число циклов до разрушения при испытаниях на МЦУ. При повышении содержания азота от 5 до 20 ppm среднее число циклов до разрушения уменьшается в 1,5 раза.
Приведённые результаты исследований указывают на крайнюю актуальность работ, направленных на обеспечение предельно низкого содержания газов и таких вредных примесей, как сера, фосфор, кремний и др.
Важнейшими процессами рафинирования безуглеродистых сложнолегированных расплавов никеля, используемых в качестве шихты заготовок для монокристаллического литья лопаток современных газотурбинных двигателей, являются десульфурация, дефосфорация и деазотация металла в зависимости от окислительного и восстановительного потенциалов вакуумной индукционной плавки [7].
Физико-химическими особенностями процессов рафинирования расплава во время окислительного периода плавки являются одновременное протекание процессов плавления матричного металла (никеля) и растворения легирующих компонентов (Co, Mo, W, Re и др.), а также образование первичного и вторичного шлака после введения в расплав закиси никеля [8]. В результате из расплава в газовую фазу удаляется сера в виде SO>2, в шлаковую фазу – фосфор в виде аниона РО>4>3-, и за счёт флотации пузырьками СО, образующимися при реакции обезуглероживания металлического расплава, – азот в виде N>2. Очевидно, что все эти процессы связаны со свойствами поверхности реагирующих фаз, в т. ч. с поверхностью металлического расплава.
С точки зрения процессов рафинирования металлов и сплавов законы термодинамики определяют направление протекания процессов рафинирования: какое количество энергии при этом будет выделяться или поглощаться, каково соотношение концентрации (активностей), при которой наступает состояние равновесия, и каковы возможные конечные состояния в зависимости от внешних условий.
Химическая же кинетика позволяет ответить на вопросы, будет ли достигнуто за приемлемый промежуток времени состояние, предсказанное термодинамикой, каким путём оно может быть достигнуто и как влияют при этом внешние условия на полноту протекания химических процессов.
В гетерогенных реакциях кинетика связана с термодинамикой для процессов, протекающих на границе раздела фаз, условия равновесия которых предсказывает термодинамика.