Оптимизация в Python - страница 16



Обычно значение `sys.getrecursionlimit()` равно 3000, что означает, что по умолчанию в Python можно вложиться в рекурсию на глубину до 3000 вызовов функций. Однако вы можете изменить это значение с помощью `sys.setrecursionlimit()` в пределах разумных пределов, если вашей программе требуется большая глубина рекурсии. Например:

```python

import sys

# Установка максимальной глубины рекурсии

sys.setrecursionlimit(5000)

```

Это позволит увеличить максимальную глубину рекурсии до 5000 вызовов функций. Но будьте осторожны, изменение этого значения может повлиять на производительность и стабильность вашей программы, поэтому делайте это осторожно и только в случае необходимости.

Обратите внимание, что `sys.maxsize` обычно имеет очень большое значение, что означает, что Python может использовать большой объем памяти. Однако стек вызовов имеет ограниченный размер, и его значение (в данном случае 3000) ограничивает глубину рекурсии в вашей программе. Если рекурсия глубже этого значения, вы можете столкнуться с ошибкой переполнения стека вызовов (RecursionError).

Модуль `sys` также предоставляет множество других функций и переменных, таких как информация о версии Python, пути поиска модулей, настройки интерпретатора и многое другое. Это делает его полезным инструментом при настройке и оптимизации вашего Python-приложения, а также при взаимодействии с системой и аппаратным обеспечением.

Использование этих встроенных инструментов позволяет разработчикам более эффективно анализировать и улучшать производительность своего кода. Это важно как для создания быстрых и отзывчивых приложений, так и для оптимизации ресурсоемких задач, таких как обработка больших объемов данных.



2.2. Использование профилировщиков

Профилирование кода – это инструмент для оптимизации и анализа производительности вашего приложения. Он позволяет выявлять "узкие места" в коде, определять, какие участки кода требуют больше времени на выполнение, и какие функции вызываются чаще всего.

Давайте рассмотрим процесс профилирования пошагово с использованием модуля `cProfile` и `line_profiler`.

Шаг 1: Установка профилировщей

Если у вас еще не установлены профилировщи, начнем с установки `line_profiler`. Откройте командную строку и выполните следующую команду:

```

pip install line_profiler

```

`cProfile` – это встроенный модуль Python, и его установка не требуется.

Шаг 2: Создание функции для профилирования

Создайте функцию, которую вы хотите профилировать. Например, создадим простую функцию, которая выполняет вычисления:

```python

def my_function():

result = 0

for i in range(1, 10001):

result += i

return result

```

Шаг 3: Профилирование с использованием `cProfile`

Профилирование с использованием `cProfile` позволяет получить общую статистику о времени выполнения функций. Вставьте следующий код в ваш скрипт:

```python

import cProfile

if __name__ == "__main__":

cProfile.run('my_function()')

```

Запустите свой скрипт. `cProfile.run()` выполнит вашу функцию и выдаст статистику, включая количество вызовов функций и общее время выполнения.

Шаг 4: Профилирование с использованием `line_profiler`

`line_profiler` позволяет профилировать код построчно. Вставьте следующий код в ваш скрипт:

```python

from line_profiler import LineProfiler

lp = LineProfiler()

@lp.profile

def my_function():

result = 0

for i in range(1, 10001):

result += i

return result

if __name__ == "__main__":