Основные концепции естествознания - страница 37
Благодаря электромагнитному взаимодействию существуют атомы и молекулы, происходят химические превращения вещества. Различные агрегатные состояния вещества, трение и упругость определяются силами межмолекулярного взаимодействия, электромагнитными по своей природе. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики, такими как закон Кулона, закон Ампера и др., и – в обобщенном виде – электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля. Получение, преобразование и применение электрического и магнитного полей, а также электрического тока служат основой для создания разнообразных современных технических средств: электроприборов, радиоприемников, телевизоров, осветительных и нагревательных приборов, компьютеров и т. п.
Согласно квантовой электродинамике, переносчиками электромагнитного взаимодействия являются фотоны – кванты электромагнитного поля с нулевой массой. Во многих случаях они регистрируются приборами в виде электромагнитной волны разной длины. Например, воспринимаемый невооруженным глазом видимый свет, посредством которого отражается основная доля (около 90 %) информации об окружающем мире, представляет собой электромагнитную волну в довольно узком диапазоне длин волн (примерно 0,4–0,8 мкм), соответствующем максимуму интенсивности солнечного излучения.
Сильное взаимодействие обеспечивает связь нуклонов в ядре. Оно определяется ядерными силами, обладающими зарядовой независимостью, короткодействием, насыщением и другими свойствами. Сильное взаимодействие отвечает за стабильность атомных ядер: чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро, тем больше его удельная энергия связи. С увеличением числа нуклонов в ядре и, следовательно, размера ядра удельная энергия связи уменьшается, и ядро может распадаться, что и происходит с ядрами элементов, находящихся в конце таблицы Менделеева.
Предполагается, что сильное взаимодействие передается глюонами – частицами, «склеивающими» кварки, входящие в состав протонов, нейтронов и других частиц.
В слабом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, взаимодействие нейтрино с веществом и другие процессы. Слабое взаимодействие проявляется главным образом в процессах бета-распада атомных ядер многих изотопов, свободных нейтронов и т. д. Принято считать, что переносчиками слабого взаимодействия являются вионы – частицы с массой примерно в 100 раз большей массы протонов и нейтронов. Вионы обнаружены в 1983 г.
Для количественной характеристики фундаментальных взаимодействий обычно используют безразмерную константу взаимодействия, определяющую величину взаимодействия, и радиус действия (табл. 2.1).
Из таблицы следует, что гравитационное взаимодействие гораздо слабее других фундаментальных взаимодействий. Радиус действия его неограничен. Оно не играет существенной роли в микропроцессах и в то же время является доминирующим для материальных объектов с большими массами (планет, звезд, галактик и т. п.). Электромагнитное взаимодействие гораздо сильнее гравитационного, хотя его радиус действия также неограничен. Для сильного и слабого взаимодействий характерно короткодействие. Сильное взаимодействие проявляется только в пределах размеров ядра (10-